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Abstract—This paper proposes a theoretical model that enables
a robot to partition its unlabeled sensorimotor experience with
different objects into discrete clusters, each corresponding to a
specific object. To solve this object individuation problem, the
robot was trained to detect whether two perceptual stimuli were
produced by the same object or by two different objects. The
model was tested using a large-scale experiment in which a
humanoid robot explored 100 different objects by performing
a variety of exploratory behaviors on them and detecting the
resulting sensory feedback from several sensory modalities. The
results show that with a small amount of prior training, the
robot’s model was able to successfully individuate the objects
with a high degree of accuracy.

I. INTRODUCTION

Humans learn to individuate objects by first learning to

detect whether two perceptual stimuli were produced by the

same object or by two different objects [1]. This ability allows

humans to infer how many unique objects they have observed

and to establish an object representation that can be used

to map individual experiences with an object to a unique

object identifier [2]. Studies in developmental psychology have

shown that this skill is fundamental to establishing an internal

object representation that can handle the large number of

objects that humans encounter in their daily lives [1], [3].

In contrast, most methods used by robots to recognize

objects start with a fixed object representation in which the

robot’s training data is labeled with one of a finite number of

object identities (see [4], [5], [6], [7], [8], [9], [10], [11] for

a representative sample of such approaches). These methods

implicitly make the assumption that the object individuation

task has already been solved. In other words, training the

robot’s object recognition models requires that the training

observations are labeled with the correct object identity.

Providing labeled data, however, becomes increasingly more

difficult as the number of objects increases. Furthermore, an

autonomous robot operating in human environments is bound

to encounter new objects that were not in its training dataset.

Therefore, in addition to recognizing objects, robots must also

be able to individuate novel objects.

To address these challenges, this paper proposes a behavior-

grounded approach to object individuation that enables a robot

to estimate how many objects it has interacted with, and

group its sensorimotor experience with objects according to

the estimated object identities. The method was tested using

a large-scale experiment in which the robot interacted with

Fig. 1. The humanoid robot used in our experiments, along with the 100
objects that it explored.

100 different objects using 10 different exploratory behaviors.

The results demonstrate that by using a small amount of prior

training, the model can successfully individuate novel objects

that were not present in the robot’s training set.

II. RELATED WORK

A. Psychology

When psychologists study how humans individuate and

identify objects they typically use an experimental design in

which the participant is presented with a sequence of objects

and at the end is asked to infer how many unique objects were

encountered [2]. In this setting, the subject cannot observe

multiple objects at the same time, and thus must rely on the

objects’ perceptual features when solving the task. The results

of the experiment conducted by Kemp et al. [2] show that

prior experience with objects with known object identities is

necessary in order to solve the object individuation task on a

novel set of objects.

Therefore, it is not surprising that humans use a variety of

cues, other than object features, when individuating objects

[2], [1]. For example, spatial cues can be used to individuate

objects since observing two objects next to each other indicates

that the two objects are not the same [12]. Humans also use

temporal cues, e.g., they assume that an object would remain

the same object over the course of contiguous manipulation or

observation [13]. Most importantly, such spatial and temporal

cues can inform the observer that the featural differences



between the objects are not due to noisy observations, but

due to the two objects being different [2], [12].

Inspired by these results from psychology, this paper pro-

poses a learning approach to object individuation in which

the robot was initially trained to detect whether two senso-

rimotor experiences are produced by the same object or by

two different objects. Subsequently, the trained model was

used to partition the robot’s sensorimotor experience with

novel objects in order to individuate them. The results of our

experiments suggest that, just as for humans, prior information,

in the form of a training set with known object identities, is

necessary for solving this problem.

B. Robotics

Object individuation has received relatively little attention

in robotics. In contrast, a wide variety of methods have been

developed that allow robots to recognize previously observed

objects. The majority of these methods use 2D and 3D visual

features (see [14], [15], [7], [9], [11]). Other vision-based

approaches have also been proposed for finding image regions

from multiple views that contain the same object [16]. In

addition, experiments have demonstrated that robots can also

recognize objects and their categories using proprioceptive

[6], [8], auditory [4], [5], tactile [17], [18] and multi-modal

[19], [10], [20] sensory feedback. The main limitation of

these systems is that the object recognition models can only

be trained on fixed datasets containing labeled data for all

objects that the robot may encounter. In other words, while

such systems can recognize previously observed objects, they

cannot individuate novel objects that they encounter after

training time.

It is worth noting that this limitation does not only plague

object recognition methods, but also affects a variety of other

robotic systems. For example, to learn the affordances of a

tool, the methods described in [21] and [22] assume that

the robot’s sensorimotor data is cleanly partitioned according

to the identity of each tool. Similarly, when categorizing

objects as either containers or non-containers, the robot in [23]

started with the implicit assumption that it already knows the

identities of all objects that it has to interact with. These and

many other examples show that today’s robots typically start

with fixed object representations, and thus lack the ability to

individuate objects that they may encounter in the future.

III. EXPERIMENTAL METHODOLOGY

A. Robot

The upper-torso humanoid robot used in our experiments

(shown in Fig. 1) has two 7-DOF Barrett Whole Arm Ma-

nipulators (WAMs), each equipped with the 3-finger Barrett

Hand. The robot’s head was equipped with an Audio-Technica

U853AW cardioid microphone that was used to capture audi-

tory feedback. Proprioceptive feedback was captured by the

built-in sensors in each WAM, which measure joint-torques at

500 Hz. Finally, visual feedback was detected using the robot’s

right eye, a 640 by 480 resolution Logitech webcam.

Fig. 2. The exploratory behaviors that the robot performed on all objects.
From top to bottom and from left to right: grasp, lift, hold, shake, drop, tap,

poke, push, and press. In addition to the 9 behaviors pictured above, the robot
also performed the look behavior, which consisted of taking an RGB snapshot
of the object on the table.

B. Objects

To test the proposed model, the robot explored 100 different

household objects, which are shown in front of the robot

in Fig. 1. Some of the objects are visually identical, but

they differ in other properties – for example, the five red

containers were filled with different contents that produced

different sounds when the objects were shaken. The five blue

containers, on the other hand, contained varying amounts of

rice, and thus they differed only in weight. To the best of

our knowledge, this dataset contains the largest number of

objects ever explored by a robot over the course of a single

experiment.

C. Exploratory Behaviors

The robot was equipped with 10 different behaviors that

it applied on all objects: look, grasp, lift, hold, shake, drop,

tap, poke, push, and press. The look behavior consisted of

taking an RGB snapshot of the object while the other nine

behaviors (see Fig. 2) were encoded as joint-space trajectories



that were executed using Barrett’s default PID controller. The

robot performed its set of 10 exploratory behaviors on each

of the 100 objects 5 different times. This resulted in a total

of 5000 behavioral interactions, which were organized into

500 exploratory trials, where each trial corresponds to the 10

different behaviors performed in a sequence on a single object.

During the execution of each behavior, the robot recorded

auditory, proprioceptive, and visual feedback, which were used

to extract different features as described below.

D. Sensorimotor Feature Extraction

1) Color: for each exploratory trial, the robot extracted an

8×8×8 color histogram in RGB space with uniformly spaced

bins from the RGB image of the object recorded during the

look behavior. For each image, background subtraction was

used to segment the object from the background.

2) SURF: the Speeded-Up Robust Features (SURF) de-

scribed in [24] were computed for all images captured by the

robot’s camera. Fig. 3.a shows an example image captured

by the robot’s camera along with the detected SURF interest

points. The X-means [25] algorithm was used to quantize the

detected SURF feature descriptors using 0.5% of all detected

feature descriptors. This resulted in a dictionary containing 200

visual “words.” Using the learned quantization, for each of the

5000 behavioral interactions, a 200-dimensional feature vector

was computed encoding a histogram of the SURF descriptors

detected over the course of executing the behavior.

3) Optical Flow: during the execution of each behavior

(except look), the stream of images captured by the camera

was used to compute dense optical flow using the algorithm

and MATLAB implementation proposed by Sun et al. [26].

For each pixel in a given image in the sequence, the algorithm

computed a real-valued vector (u, v) encoding the direction

of motion (i.e., the vector’s angle) as well as the magnitude

of the motion (i.e., the vector’s norm). Fig. 3.b shows the

detected optical flow for a single frame captured during the

execution of the poke behavior on one of the green cones

(the hue encodes the angle of the optical flow vector, while

the intensity corresponds to the vector’s norm). To reduce the

dimensionality of the optical flow feedback, weighted angular

histogram features were extracted from the sequence of optical

flow images by binning the angles into 10 equally spaced bins.

In other words, the norms of the optical flow vectors with

angles ranging from 0 to 2π/10 were added to bin number 1,

while those in the range of 2π/10 to 2 × 2π/10 were added

to bin number 2, and so forth.

4) Proprioception: proprioceptive features were extracted

from the recorded joint torques for all 7 joints of the robot’s

left arm for all behaviors except look. The torques were

recorded at 500Hz. To reduce the dimensionality of the signal,

the series of torque values for each joint were discretized into

10 temporal bins (i.e., each bin encoded the average torque

that was measured over its corresponding time window). This

resulted in lower-dimensional data points x ∈ R
10×7, which

were subsequently used to represent the robot’s proprioceptive

experience with the objects. Fig. 3.c shows an example 10 × 7

Temporal bins

J
o
in

ts

c) Proprioceptive features

Temporal bins

F
re

q
.

B
in

s

d) Auditory features

a) SURF interest points b) Optical flow

Fig. 3. Visualization of some of the sensorimotor features used by the robot.
a) Sample SURF interest points computed from a single image; b) Sample
dense optical flow computed while executing the poke behavior; c) Sample
proprioceptive features detected while executing the press behavior; d) Sample
audio features computed from the DFT for the drop behavior.

feature vector, visualized as a matrix in which the rows

correspond to the 7 joints and the columns correspond to the

10 temporal bins. In addition to the joint-torque proprioceptive

features, at the end of the grasp behavior, the final joint

position for each of the three fingers was recorded and used

as an additional source of proprioceptive feedback.

5) Audio: after the execution of each of the 9 interac-

tive behaviors, the log-normalized Discrete Fourier Transform

(DFT) was computed for the recorded waveform. The DFT

was computed with the SPHINX4 natural language processing

library package [27] using 27 + 1 = 129 frequency bins. To

reduce dimensionality, the DFT was further discretized using

10 temporal bins and 10 frequency bins, where the value for

each bin was set to the average of the values in the DFT matrix

that fell into it. Fig. 3.d shows one discretized DFT that was

calculated after performing the drop behavior.

In summary, during each exploratory trial, the robot per-

formed 10 exploratory behaviors on one of the 100 objects.

Five of these trials were recorded for each object. During the

execution of each behavior, the robot extracted features from

several sensory modalities, where each viable combination

of behavior and sensory modality (e.g., drop-audio or look-

color) determined a unique sensorimotor context. The audi-

tory, proprioceptive, and optical flow features were extracted

while performing all 9 interactive behaviors. SURF features

were extracted for all 10 behaviors. Color features were

extracted from the static images captured during the look

behavior while hand-proprioceptive features were extracted

during the execution of the grasp behavior. Thus, the total

number of sensorimotor contexts available to the robot was

9 × 3 + 10 + 1 + 1 = 39.



IV. THEORETICAL MODEL

A. Notation and Problem Formulation

Let S be the set of sensorimotor contexts available to the

robot, where each context refers to a specific combination

of a behavior and a sensory modality. Also, let T be the

full set of 500 exploratory trials with all objects. During

each trial, the robot applies its set of exploratory behaviors

on some object o ∈ O. The ith exploration trial can be

represented with the collection of observed sensory feedback

signals, Ti = {xs
i}s∈S , where each feature xs

i ∈ R
ds .

The object individuation task can be formulated as follows.

Let Ttest = {Ti}
n
i=1

be a test set containing n interaction trials

in which the robot explored a test set of objects, Otest ⊂ O.

The individuation task is to separate the set of trials Ttest into

groups, such that each group contains only the trials with one

of the objects in Otest.

In other words, the object individuation task is a special

case of clustering in which each data point corresponds to a

sensorimotor observation with a physical object. In contrast to

fully unsupervised clustering methods, the approach described

here uses prior information in the form of a set of training trials

for which the object identities are known. Let Otrain ⊂ O be

the objects in the robot’s training set such that Otrain∩Otest =
∅. The set Ttrain = {Ti, oi}

ntrain

i=1
contains the exploratory

trials with the training objects, where each trial Ti is labeled

with the corresponding object identity oi ∈ Otrain.

The method for object individuation described in this paper

consists of the following three stages:

1) Distance Estimation Stage: During this step, the robot

estimates pair-wise distances for each pair of trials in

T , and for each sensorimotor context s.

2) Learning Stage: The data in Ttrain is used to learn a

model that can classify a pair of trials as either “same”,

i.e., belonging to the same object, or “different”, i.e.,

belonging to two different objects.

3) Individuation Stage: The learned model is applied on

each pair of trials in the set Ttest, and in conjunction

with a graph-based clustering algorithm is used to pro-

duce the labels of the final object individuation.

The next three subsections provide a detailed description

for each of these three stages.

B. Distance Estimation Stage

In the first stage, the task is to estimate the perceptual

dis-similarity for each pair of trials in the set T . Given a

sensorimotor context s ∈ S, let xs
i ∈ R

ds and xs
j ∈ R

ds be

the feature vectors detected in that context for trials Ti and

Tj . In this work, the dis-similarity between trials Ti and Tj in

context s was estimated by computing the Euclidean distance

between the feature vectors xs
i and xs

j . Thus, for each context

s ∈ S, the robot estimated a pair-wise trial distance matrix,

W
s ∈ R

|T |×|T |, such that each entry W s
ij ∈ R encoded

the perceptual dis-similarity between trials Ti and Tj in that

context. Finally, for each matrix, the values of all elements

were linearly rescaled to lie in the range from 0.0 to 1.0.

C. Learning Stage

A fundamental pre-requisite for object individuation is the

ability to detect whether two perceptual stimuli were produced

by the same object or by two different objects [1]. In the

method proposed here, this is accomplished by learning a

model that can classify a pair of trials as either “same” or

“different”, where the label depends on whether the same

object was present in both trials or not. To learn such a model,

two types of features were extracted for each pair of trials:

• Perceptual dis-similarity features: given a pair of trials Ti

and Tj , a feature vector f
ij ∈ R

|S| was computed where

each element f ij
s = W s

ij for s = 1 to |S|. In other words,

f
ij encodes the perceptual distances between trials Ti and

Tj in all available sensorimotor contexts.

• Dis-similarity histogram features: given a pair of trials Ti

and Tj , and the computed feature vector f
ij , the values

in f
ij were used to construct a histogram that encodes

the distribution of dis-similarities for the two trials. The

histogram was constructed using 10 equally spaced bins,

resulting in a 10-dimensional feature vector h
ij .

During the learning stage, the two types of features were

computed for all pairs of trials Ti and Tj from the set Ttrain.

This resulted in two datasets, Ddist = {f ij , yij} and Dhist =
{hij , yij}, where each yij = +1 if trials Ti and Tj were

performed with the same object and −1 otherwise. The first

dataset, Ddist, contained the raw perceptual distance features

for each pair of trials, while the second, Dhist, was based

on features that encode the distribution of the raw perceptual

distances.

The datasets were subsequently used to train two machine

learning classifiers, Mdist and Mhist on the task of detect-

ing whether two trials were performed on the same object.

Thus, given a trial pair (Ti, Tj), the model Mdist produced

an estimate for Prdist(“same” | f ij), i.e., the probability that

the two trials contained the same object. Similarly, given

the same trial pair, the model Mhist produced the same

estimate based on the histogram features for the trial pair,

i.e., Prhist(“same” |hij). In the experiments described in this

paper, each of the two models was implemented using the

WEKA [28] implementation of the AdaBoost [29] algorithm

with C4.5 decision tree [30] as a base classifier.

D. Individuation Stage

Given a test set of trials Ttest, the outputs of the classifiers

Mdist and Mhist, computed for each pair of trials in Ttest,

were used to individuate the objects as described below. Let

A ∈ R
|Ttest|×|Ttest| be the resulting individuation matrix

where each entry was computed as:

Aij =
Prdist(“same” | f ij) + Prhist(“same” |hij)

2

In other words, each entry Aij corresponds to the estimated

probability that trials Ti and Tj were performed with the

same object. This probability was computed using a uniform

combination of the outputs of the two classifiers.



To construct an object individuation using the matrix A,

the robot used the spectral clustering algorithm, which is

one of several graph-based or similarity-based clustering

algorithms [31]. Given an affinity matrix, i.e., A, the algorithm

partitions the set of trials into disjoint clusters by exploiting

the eigenstructure of the matrix A. To solve the problem

efficiently, Shi and Malik [32] proposed an algorithm that

optimizes the normalized cut objective function. Given an

input individuation matrix A ∈ R
n×n, the algorithm can be

summarized with the following steps:

1) Let D ∈ R
n×n be the degree matrix of A, i.e., a

diagonal matrix such that Dii =
∑

j Aij .

2) Solve the eigenvalue system (D − A)x = λDx for

the eigenvector corresponding to the second smallest

eigenvalue and use it to bipartition the graph.

3) If necessary, recursively bipartition each subgraph that

was obtained in Step 2.

This procedure recursively bipartitions the graph induced

by the matrix A until the spectral clustering algorithm fails to

find a bipartition with a high score according to the normalized

cut objective function or until it fails to find a solution to

the eigenvalue system. The code for the spectral clustering

algorithm (Steps 1 and 2) used in our experiments is listed

on the WEKA machine learning repository website (see http:

//www.cs.waikato.ac.nz/ml/weka/index related.html).

The output of this procedure is a partitioning of the n trials

into k clusters, which can be represented as a set of k sets

of trials, C = {Cℓ|ℓ = 1, . . . , k} or as a label vector ω ∈ N
n

where each entry ωi ∈ {1, . . . , k} encodes the partition label

for trial Ti. The next section describes several measures that

were used to evaluate the robot’s object individuation model.

V. EVALUATION

A. Performance Measures

The estimated partitioning Ĉ and the corresponding label

vector ω̂ were evaluated by comparing them to the ground

truth individuation, represented by the partitioning C and the

vector ω, using several different methods.

1) Normalized Mutual Information: Normalized Mutual

Information (NMI) has been proposed as a measure to capture

the similarity between two different clusterings over the same

dataset [33]. Given two clusterings ωa and ωb defined over the

same set of n trials, let ka and kb be the number of clusters

in ωa and ωb respectively. Let na
h be the number of trials in

cluster Ch according to ωa, and let nb
ℓ the number of trials

in cluster Cℓ according to ωb. Also, let nh,ℓ be the number

of trials that are in cluster Ch according to ωa, as well as in

cluster Cℓ according to ωb. Using these definitions, the NMI

estimate, φNMI , is defined as:

φNMI(ωa, ωb) =

ka

∑

h=1

kb

∑

ℓ=1

nh,ℓ log

(

n ∗ nh,ℓ

na
h ∗ nb

ℓ

)

√

√

√

√

(

ka

∑

h=1

na
h log(

na
h

n
)

)(

kb

∑

ℓ=1

nb
ℓ log(

nb
ℓ

n
)

)

.

This pairwise measure of mutual information is always

in the range of 0.0 to 1.0, where 1.0 indicates that the

two partitionings are identical while 0.0 means that the two

partitionings were computed over two disjoint datasets.

2) Mean Partition Entropy: The second performance mea-

sure was chosen to evaluate the purity of each resulting cluster

in the individuation with respect to object identity. Given a

partition Cℓ ∈ C, let Prℓ(o) be the probability that a randomly

sampled trial from Cℓ was performed on object o ∈ O.

Given the distribution over all objects for a given partition

Cℓ, Shannon’s entropy [34] can be computed by:

Hℓ = −
∑

o∈O

Prℓ(o) log(Prℓ(o)).

A value of 0.0 for a cluster Cℓ would indicate that the

cluster only contains trials with one object, while large values

for Hℓ would signify that the cluster contains trials with many

different objects. Thus, given the full partitioning, C, the Mean

Partition Entropy (MPE) is defined as:

MPE(C) =
1

|C|

∑

Cℓ∈C

Hℓ.

3) α-Individuation Rate: The last measure estimates the

percentage of objects in the test set that were individuated

correctly. An object o is considered individuated if there exists

a partition Cℓ in the set C that contains at least α trials with

object o and no trials with any other objects. In this study, the

robot performed 5 trials with each object, and therefore, the

α-Individuation Rate was computed for α = 3, 4, and 5.

B. Baseline Comparison

The method for object individuation was also compared

against an unsupervised approach in which the test set of trials

is partitioned using only the pairwise distance matrices W
s.

To do so, a trial affinity matrix U was constructed such that

each entry Uij = (1/|S|)
∑

s∈S(1.0 − W s
ij). In other words,

each entry Uij corresponds to the average perceptual similarity

for the two trials computed across all sensorimotor contexts,

with values close to 1.0 meaning highly similar and values

close to 0.0 meaning highly dis-similar. The matrix U was

then used as input to the partitioning algorithm described in

Section IV.D to produce a final object individuation.

VI. RESULTS

A. Example

Figure 4.a shows a sample trial individuation matrix, A,

which was computed using a test set of 25 trials with 5

different objects (5 trials per object). Each entry in the matrix

encodes the estimated probability that a pair of trials was

performed with the same object, where dark indicates high

likelihood and white indicates low likelihood. The individua-

tion model used to fill in the entries of the matrix was trained

on a separate set of 25 trials with another set of 5 objects.

For visualization purposes, the entries of the matrix are

sorted by object identity. Because the matrix is sorted, the

block pattern along the diagonal clearly shows that the learned



a) Estimated Object Individuation Matrix

C1 C2 C3 C4 C5

b) Resulting Individuation
Fig. 4. a) An example object individuation matrix A. The matrix encodes
the estimated likelihood that a pair of trials in the test set were performed on
the same object, where dark indicates high likelihood and white indicates low
likelihood. In this example, the test set contained 25 trials with 5 different
objects (5 trials per object). For better visualization, the entries of the matrix
are sorted by object identity. b) The resulting object individuation. Each
partition corresponds to a set of trials that, according to the trained model,
were performed with the same object.

model was able to detect which pairs of trials were performed

with the same object far better than chance. For comparison,

Fig. 5 shows the perceptual similarity matrix, U, for the

same 25 exploratory trials, computed from the 39 raw context-

specific distance matrices W
s using the unsupervised baseline

approach. It is easy to see that the matrix U has more non-

zero entries than the matrix A for pairs of trials that do not

belong to the same object.

The estimated object individuation matrix A was used as

an input to the partitioning algorithm to produce the final

individuation shown in Fig. 4.b. Each of the 5 partitions in

Fig. 5. An example perceptual similarity matrix, U, for 25 exploratory trials
computed using the 39 raw context-specific distance matrices Ws.

the individuation corresponds to a set of trials that, according

to the model, were performed with the same object. In

this example, the model made one mistake as it incorrectly

grouped one of the trials performed with the blue ball with

the set of trials performed with the purple-yellow ball. The

Normalized Mutual Information (NMI) between the output

individuation and the ground truth individuation was 0.935.

The α-Individuation Rate for α = 3 and α = 4 was 80.0%
since in both cases there was one object (the first ball) that

could not be individuated on its own. For α = 5, the rate was

60.0% since only 3 of the objects were perfectly individuated

(i.e., with all 5 trials in the same partition). To compare, when

the perceptual similarity matrix U (see Fig. 5) was used to

partition the test trials the results were noticeably worse. The

individuation had a substantially lower NMI of 0.809 and the

α-individuation rate was only 20.0% for α = 3, 4 and 5 (i.e.,

one partition contained 5 trials with a single object, while all

others were mixed).

B. Baseline Comparison

The proposed individuation model was compared against

the baseline unsupervised approach for partitioning the trials

in the test set. During each test, the two approaches were

evaluated using a randomly sampled set of 20 training objects

and another randomly sampled set of 20 test objects, such that

the two sets were disjoint. To compare against a chance model,

the same experiment was performed with the added step of

randomly shuffling the entries in the individuation matrix A

before clustering it (i.e., multiple randomly chosen pairs of

values in the matrix were swapped before using the matrix to

compute the partitioning). Table I shows the results of these

evaluations, averaged over 100 tests. Both the learned and

the unsupervised models performed much better than chance.

Furthermore, the superior performance of the learned model



TABLE I
COMPARISON BETWEEN THE LEARNED INDIVIDUATION MODEL, THE

BASELINE UNSUPERVISED MODEL, AND THE CHANCE MODEL

Normalized Mean α-Individuation Rate (%)

Mutual Partition α = 3 α = 4 α = 5

Information Entropy

Learned 0.964 0.056 87.1 74.5 71.5

Unsupervised 0.878 0.416 32.2 32.2 31.9

Random 0.506 1.373 0.0 0.0 0.0
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Fig. 6. Performance of the robot’s object individuation model, measured by
the Normalized Mutual Information criterion, as a function of the number of
objects used to train it. The dashed lines show the standard deviation, which
was computed over 100 tests.

clearly shows that prior information, in the form of exploratory

trials with known object identities, can substantially improve

the robot’s performance when individuating novel objects.

C. Performance vs. Number of Training Objects

The performance of the object individuation model was also

evaluated as a function of the number of training objects, m,

which was varied from 2 to 40. For each value, 100 tests

were performed, such that during each test the model was

evaluated using a randomly sampled set of m training objects

and another randomly sampled set of 20 test objects.

The results of these tests, shown in Fig. 6, indicate that

the model’s performance converges once there are at least 20

objects in the training set. Overall, even with a small number

of training objects, the robot’s model is able to successfully

individuate novel objects substantially better than chance.

D. Performance vs. Number of Test Objects

The last experiment explored the relationship between the

number of objects in the test set and the performance of the

robot’s object individuation model. Studies in psychology have

shown that there are inherent limits on the number of objects

that humans can individuate at a time [12], [35]. To find out

if the same is true for our robot, the number of objects in the

test set was varied from 2 to 80, while the number of training

objects was kept constant at 20.

Figure 7 shows the results of this experiment, where perfor-

mance was measured using the Normalized Mutual Informa-

tion measure. The results show that, just as with humans, the
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Fig. 7. Performance of the learned individuation model and the baseline
unsupervised model as a function of the number of objects in the test set.
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Fig. 8. Example object individuation matrix, A (left), and perceptual
similarity matrix, U (right), for a set 400 exploratory trials with 80 different
objects (5 trials per object).

individuation task becomes more difficult as the number of test

objects is increased. A possible explanation for this is that as

the test set becomes larger, there are more pairs of perceptually

similar objects that complicate the task. Nevertheless, even

with a test set of 80 objects, the learned model was still able

to successfully individuate over 60.0% of the objects. The

unsupervised model, on the other hand, was able to individuate

only 10% of the novel objects.

Fig. 8 shows example object individuation and perceptual

similarity matrices (A and U) for a test set of 400 exploratory

trials with 80 objects (5 trials per object). As before, the

entries in the matrices are sorted by object identity. Unlike the

perceptual similarity matrix, the individuation matrix is sparse

and has very few large values for pairs of trials that were

performed with two different objects. Furthermore, as shown

in Fig. 7, the performance of the unsupervised model drops

at a much faster rate as the number of objects is increased,

which showcases the need for prior training before attempting

to individuate novel objects.

VII. CONCLUSION AND FUTURE WORK

While the problem of object recognition is well studied in

robotics, the task of individuating novel objects that were not

part of the robot’s training set has received very little attention.

To address this gap, this paper proposed a method that allows a

robot to successfully partition its sensorimotor experience with

novel objects into clusters that correspond to the identities of

the objects. The proposed method was tested with a large-scale



dataset in which the robot explored 100 objects using a variety

of exploratory behaviors and sensory modalities. Using prior

information from exploratory trials for which the identities of

the objects are known, the robot was able to achieve high

performance on the task of object individuation as measured

by several different performance measures.

A key result from our experiments is that unsupervised

methods for partitioning of the robot’s sensorimotor experi-

ence may not be sufficient for solving the object individuation

problem. Instead, prior information, in the form of exploratory

trials with known object identities, is needed in order to

learn whether the observed perceptual differences between two

sensorimotor interactions are due to noise or due to the fact

that the interactions were performed with two different objects.

On average, the use of training data allowed the model to

successfully individuate 87.1% of the objects in a test set of

size 20, while, without it, the unsupervised model individuated

only 32.2% of the 20 objects. Even with a larger test set of 80

objects, the learned model was able to individuate over 60%
of the objects, while the model without prior training was able

to individuate only 10% of the objects.

Another important result of this paper is that, similar to

studies with humans, performance was sensitive to the number

of objects to be individuated. Therefore, one viable direction

for future work is to explore ways of individuating a large

number of objects by incrementally individuating smaller

object subsets. Another direction for future work is to consider

the effect of category and object labels on the individuation,

since it has been shown that the presence of labels (i.e., words

that describe the object) can improve the object individuation

performance of human infants [36].
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