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Abstract— This paper describes an approach to interactive
object categorization that couples exploratory behaviors and
their resulting acoustic signatures to form object categories.
The framework was tested with an upper-torso humanoid robot
on a container/non-container categorization task. The robot
used six exploratory behaviors (drop block, grasp, move, shake,
flip, and drop object) and applied them to twenty objects. The
results from this large-scale experimental study show that the
robot was able to learn meaningful object categories using only
acoustic information. The results also show that the quality of
the categorization depends on the exploratory behavior used
to derive it as some behaviors elicit more salient acoustic
signatures than others.

I. INTRODUCTION Fig. 1. The upper-torso humanoid robot used in the experim&hts robot

- . . L. is shaking one of the container objects used in the experdnent
The ability to form meaningful object categories is one of

the hallmarks of human infant development [1]. Infants as

young as 6-months-old can learn an abstract representatigiiyms of simple contact are sufficient for a robot to identify
of a simple object category [2]. Furthermore, theories ifhe material type from which the object is made of. A robot
psychology and cognitive science have proposed that actiygn hecome better at object recognition as it performs more
interaction with objects is necessary to form categories thexploratory behaviors on an object [13]. Further work is
capture the functional properties of an object [3]. Tramlii  ecessary, however, to determine if a robot can use similar
ally, however, most methods for object recognition and cibje acoustic models to form object categories.

categorization have been vision-based (see [4] for atileza 11,5 paper tests the assumption that a robot can form

review). Because these methods rely on passive observationaningful categories of objects using only acoustic infor
(as opposed to active exploration) they often fail to captunya4ion “The robot's task was to categorize 10 container

the functional properties of objects. For example, two 6lsi€ 5,4 10 non-container objects using six different explasato
that look the same are indistinguishable with vision buythebehaviors d@rop block grasp move shake flip, and drop
may produce different sounds when shaken. Similarly, it i§jecy The robot automatically formed acoustic outcome
very hard to specify what a container looks like, but it may;555e5 by clustering the sounds it observed for a given

be very easy to detect a container by dropping an object 0VgEnayior. Object categories were determined using the fre-

it and listening for the specific sound pattern of the objechency with which different acoustic outcomes occurredhwit

bouncing inside the container. different objects. The results show that the robot was iddee
In contrast to disembodied vision-based systems, humagge 5 form meaningful object categories. The results also

and many animals use active behavioral exploration to leag},,v that the number of interactions and the choice of

about and to classify novel objects [5]. Furthermore, hm"narbxploratory behavior affect the quality of the categoiizat

ground object knowledge using multiple modalities (€.9.55'some behaviors are better suited for this task than others
touch and hearing) in addition to vision. Similar behavior-

grounded approaches have proven quite useful in robotics
as well [6] [7]. The advantage of using behaviors to ground
object information is that the robot can autonomously test, Relatively few studies have investigated how a robot can
verify, and correct its own knowledge representation witho groundthe representation of object categories in its sensori-
human intervention [8] [9]. motor experience. Perhaps the first work toward interactive
A growing body of empirical studies in embodied acousti@bject categorization was done by Pfeifer and Scheier [@5],
object recognition supports this view [10] [11] [12] [134]L  which a mobile robot traversed its environment with the task
These studies have shown that probing an object and othafr cleaning it. The robot could lift small objects and push

Il. RELATED WORK



medium-sized objects. The robot learned to collect small arand 5 non-containers using visual information. The robot
medium-sized objects and to ignore large objects. dropped a block over an object and observed co-movement
Several studies have shown how a robot can learn sirpatterns between the block and the object as it pushed
ilarities among different types of objects. The robot in theéhe object. It formed outcome classes by clustering its
work described by Sinapov and Stoytchev [16] interactedbservations of co-movement. It formed object categories
with 6 different stick-shaped tools and learned a hierarchby clustering the objects based on the frequency with which
cal taxonomy of outcomes for each one. It computed theifferent co-movement outcomes occurred with each object.
functional similarity between two tools by comparing theirThe separation of containers and non-containers allowed th
outcome taxonomies. In another study, Montesatoal. robot to learn a visual representation of each category from
[17] created a framework with which a robot learned the8D depth images, which it used to quickly identify the
similarity between differently sized spheres and cubes bgategory of novel objects.
learning relationships between the robot’s interactidhs, This paper builds on our previous work [22] by adding
object’s features, and the observed effects. In the work ahore exploratory behaviors (now 6 instead of 1), increasing
Ugur et al. [18], a simulated robot traversed an environmenthe number of the behavioral interactions with the objects
with random dispersions of spheres, cubes, and cylindef®mow 12000 instead of 1000), and capturing acoustic data
It learned which objects afforded traversability (sphemed instead of visual movement data. In [22] the robot learned
cylinders in lying orientations) from those that did notlfes the object categories using visual co-movement features
and cylinders in upright orientations). None of the robats i specified by a human. In this paper the robot automatically
[16], [17], or [18] performed explicit object categorizati.  extracted acoustic features, after exploring 20 objeatsl, a
Metta and Fitzpatrick [19] [6] showed that a robot couldlearned from these features in an unsupervised way. It dhoul
simplify the task of object segmentation and recognition be noted that in this paper, the identity of each object is
probing its environment. When the robot’s arm made contaeissumed to be known. In other words, the acoustic data
with an object it detected a unified area of movement that dorresponding to actions on a specific object is labeled with
used to delineate the object from the background. This kdelpéhe object ID. What is unlabeled is the category (container
the robot learn an object model for recognition. The robotersus non-container).
also observed the different movement outcomes for each
object (e.g.,rollable and non-rollablg), which it associated I[1l. EXPERIMENTAL SETUP
with the object model.
In the work of Nakamuraet al. [20] a robot captured A. Robot
multimodal object data, which was used to infer the object
properties in one modality using data from another. Th
robot squeezed objects to capture hardness, shook obje

to capture sound, and viewed objects from different ang| . X .
to capture visual features. They showed that the robot cou|Tc§Ch”0|09y, each equipped with the Barrett Hand as its end

infer the hardness of an object from visual information mucff'€CtOr- The WAMs are mounted in a configuration similar

better than it could infer whether the object would makd® that of human arms. They are controlled in real time from
noise using visual information a Linux PC at 500 Hz over a CAN bus interface.

In the work of Sinapov and Stoytchev [13], a robot rec- The audio data for the experiments was collected with

ognized objects using only acoustic data. The robot acduir@” Audio-Technica UB53AW UniPoint Cardioid Condenser
an interaction history of 1800 behaviors by performing 512n9ing Microphone mounted in the robots head. The
interactions grasp shake drop, push andtap) 10 times on Microphone’s output was routed through an ART Tube MP
36 objects. The robot was able to recognize objects fromtudio Microphone pre-amplifier and a Lexicon Alpha bus-
novel acoustic outcomes with 73% accuracy. The recognitiéﬁow,ered interface, which transmits sound to t'he PC via U_SB'
accuracy increased to 99% when the robot was allowed t%udlo was recorded at 44.1 KHz over a 16-bit channel using
perform all 5 behaviors on the object before determining itd1e Java Sound APL.

identity. In a follow-up study [14], the robot was also ableg. Opjects

to classify objects based on their material type.

Sahaiet al. [21] used a robot to categorize 12 different The robot interacted with a small plastic block and 10
objects and 12 different surfaces. The categories capturddferent objects (shown in Fig. 2). Each of the 10 objects
differences in the usefulness of objects and surfaces fmtro was a container in one orientation and a non-container when
writing tasks. The robot detected marks as it performed 1ipped over. Flipping the containers was an easy way for
trace-making behaviors with each object-surface pair. Thiae robot to learn about non-containers while preservirgg th
robot categorized objects using the frequency with whicdimensions of the objects in the two categories.
each object left a mark on each surface. It categorized sur-The objects were selected to have a variety of shapes,
faces using the frequency with which each surface capturasizes, and materials. Objects were tall, short, rectangula
the traces left by each object. and round. They were made of plastic, metal, wicker, and

In our previous work [22], a robot categorized 5 containerfoam. A few objects that were initially selected could not be

All experiments were performed with the upper-torso
gnanoid robot shown in Fig. 1. The robot was built with
wo 7-DOF Whole Arm Manipulators (WAMSs) by Barrett



Containers

Non-containers

Fig. 2. The objects used in the experimentoiftainers) The first two
rows show the 10 container objects: wicker basket, metdh ttas, potpourri
basket, flower pot, bed riser, purple bucket, styrofoam btjatar trash can,
green bucket, and red buckedn-containerg The second two rows show
the same 10 objects as before but flipped upside down, whichsrthken
non-containers for this particular robot with this partauset of behaviors.

used because they were too large to be grasped. Also, the
aluminum fingers of the Barrett Hand did not create a firm
grip with many objects, which was important for a large-
scale experimental study like this one. Therefore, rubber
fingers were stretched over each of the robot’s three fingers
to achieve more reliable grasps.

C. Robot Behaviors

Six behaviors were performed during each trial: dipp

the block, 2)graspthe object, 3)movethe object, 4)shake

the object, 5¥lip the object, and 6Jirop the object. A person
placed the block and the object at specific locations before
the start of each experiment. The robot grasped the block
and positioned its hand in the area above the object before
executing the six behaviors listed above. Figure 3 shows the
sequence of interactions for two separate trials.

The drop positions for thedrop block behavior were
randomly selected from a 2D Gaussian distribution centered
above the object. The standard deviation was empiricatly se
to be equal to the width (in pixels) of each object. Thus,
the small block fell inside a container during approximgtel
70% of all trials with containers. During the other 30% of the
trials with containers (and during trials with non-conttis)
the block fell on the table. In some cases the block rolled
off the table (approximately 5% of all trials). In these c@se Fig, 3.
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Snapshots from two separate trials with a contaimer @ non-

the block was left off the table for the duration of the trial.container object. Before each trial a human experimentet thsesetup by

. . placing the block and the object at marked locations. Aftersging the

The other behaviors are self-explanatory (see Fig. 3). block and positioning its arm at a random location above thiga the
robot performed the six exploratory behaviors one after fagrot



1)Transform to Spectrograms
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The feature extraction process: 1) The raw sound vgawduced by each behavior is transformed to a spectrogranh &aectrogram has 33

bins (represented as column vectors), which capture thadityeof the audio signal for different frequencies at a givene slice. Red color indicates
high intensity while blue color indicates low intensity. 2) SOM is trained using randomly selected column vectors frobendpectrograms for a given
behavior. 3) The column vectors of each spectrogram are mappadliscrete state sequence using the states of the SOM.cBaohn vector is mapped
to the most highly activated SOM node when the column vectosétas an input to the SOM. See the text for more details.

IV. METHODOLOGY

A. Data Collection

The robot collected multiple audio sequences while per-
forming each of the six exploratory behavioi8,= [drop
block grasp move shake flip, drop objec}. The six behav-
iors were organized into trials and always performed one
after another (see Fig. 3). For each of the 20 objects (1'8
containers and 10 non-containers) the robot performed 1
trials, for a total 0f20 x 100 = 2000 trials. With 6 behaviors
per trial, the robot performed x 2000 = 12000 behavioral

interactions.

Another way to describe this dataset is to say that ea%vﬁ
behavior (e.g.shak¢ was performed 100 times on each of
the 20 objects. Thus, each of the six behaviors was performg
2000 times. During every interaction the tupl®,©, A)
was recorded, wher® € B was one of the six behaviors
performed on objecO € O, and A was the recorded audio

sequence.

object identity or test behavior.

B. Feature Extraction

Transform which takes a 44.1 KHz audio sampig, and

converts it to a 33 bin spectrograi®; = [p¢, ..

., p}], where

pi € R?%; 2) a 2D SOM that is trained with the spectrograms

and 3) a mappingM (

corresponding to one of the robot’s six exploratory behesjio
_ p}) — s, of each spectrogram column
vector,pj, to the most highly activated stat€, in the SOM
whenpj is presented as an input to the SOM (sge Fig. 4). The
apping process results in a state sequefice sjsj . .. s,
were eachs§ stands for one of the SOM nodes.

The robot performed this procedure six times, once for
every behavior. It acquired a set of state sequencgs, 22’

=11

for each of its six behaviors. This feature extraction mdtho
as chosen because it does not require a human to select
e acoustic features that the robot will have to use. The al-
8rithm identifies and computes features in an unsupervised
way. See [13] for further details.

C. Learning Auditory Outcome Classes

The acoustic outcome patterns produced by a given behav-
To minimize the effect of changing background noisdor can be clustered automatically to obtain auditory ooteo
while collecting a dataset of this magnitude, the roboglasses. As the number of interactions increases, theddarn
performed one trial with each of the twenty objects showRutcome classes gradually become more stable and more ro-
in Fig. 2 before moving on to the second trial with thebust to outliers (see section V.C). In our case, the robask t
first object, and so on. This order was chosen to keefyas to learn 6 separate sets of acoustic outcome classes—
slow Changes in background noise (e_g.’ air-condition'm@ a one for each behavior. More forma”y, the robot learned
computer fans) decorrelated from other variables such &itcome classe§' = {ci,...,c;} from the set of SOM state

sequences{S; }527,

observed during the execution of one

of the 6 behaviors. An unsupervised hierarchical clustgrin
procedure based on thepectral clusteringalgorithm was
Auditory features were extracted automatically by repressed for this task (spectral clustering is a similaritydzhs
senting the sounds produced by each behavioral interactichustering algorithm [23]). The procedure was performed 6
as a sequence of nodes in a Self-Organizing Map (SOM). Tldifferent times to obtain 6 different sets of acoustic outeo
feature extraction process is the same as in our previouls watlasses. Figure 5 illustrates the process for only one ahthe
[13]. The three stage process includes: 1) a Discrete FHourie Thespectral clusteringlgorithm requires a similarity ma-

trix as its input. The similarity between acoustic outcomes



S, and Sy, represented as sequences of SOM states p$et of 2000 Spectrograms Set of 2000 Sequences
duced by two different executions of the same behavior V\a_éor a Given Behavior (one for Each Spectrogram)
determined using the Needleman-Wunsch global alignme? G A
algorithm [24] [25]. The algorithm can estimate the sinithar
between any two sequences if the data is represented ai
sequence over a finite alphabet. The general applicability|
the algorithm has made it popular for other applicationsisu
as comparing biological sequences, text sequences, ara n
[25]. Computing the similarity of two sequences requires| a.
substitution cost (i.e., a difference function) to be defifer |
any two tokens in the finite alphabet. Here the substituti :
cost is defined as the Euclidean distance between any two Learned Outcome Classes
nodes in the SOM (each node in the 2D SOM has:and
ay coordinate). ) Spectral
The resulting similarity matrix, W, was used as input 3 Clustering
to the unsupervised hierarchical clustering procedurdchivh :
partitions the input data points (i.e., audio sequence®) in
disjoint clusters. The spectral clustering algorithm exisl
the eigenstructure of the matrix to partition the data point
Finding the optimal graph partition is an NP-complete
problem. Therefore, the Shi and Malik [26] approximationgig 5. jjustration of the process used to leam acousticame classes.
algorithm was used, which minimizes th®rmalized cut Each spectrogram is transformed into a state sequence usingyatined

objective function. The following steps give a summary offOM which results in 2000 sequencés; }727’, for each behavior. The
acoustic outcome classes are learned by recursively apptyie spectral

the algorithm: clustering algorithm on this set of sequences. Acousticaues,C' =
1) LetW,,,, be the symmetric matrix containing the simi- {c1, ..., cx }, are the leaf nodes of the tree created by the recursiveitigor
larity score for each pair of acoustic outcome sequences.
2) Let D, «, be the degree matrix oW, i.e., a diagonal

N S S T [l
St ‘91 ‘32 |53 ‘“‘|5171‘51

SOM |5 [2 2 [2 ][4

S2UU(]:|S?U(JU‘S§OOU‘ 530011 . ‘ 52000 ‘S‘lzouo

matrix such thaD;; = 3. W;. O = {04,...,09}, the robot computed an outcome oc-
3) Solve the eigenvalue systef — W)z — ADz for currence vectord, = [hy, ..., hy] for each objecO,. The

the eigenvector corresponding to the second smalleéglue of eacthj represents the number of times the acoustic

eigenvalue. outcomec; occurred with objectO,,, divided by the total

4) Search for a threshold of the resulting eigenvector tgumber of interactions (100 interactions in this case). In
create a bi-partition of the set of acoustic outcomes th@ther words, each outcome occurrence vedtor encodes

minimizes the normalized cut objective function. Accepf Probability distribution over the set of outcome classes,
this bi-partition if the resulting value of the objective SUch thathj estimates the probability of observing outcome

function is smaller than a threshotd classc; with objectO, over the entire history of interactions.
5) Recursively bi-partition subgraphs obtained in step 4 The robot formecdbject classedy clustering t_he feature
that have at least acoustic sequences. vectorsHy, ..., Hy (one for each of the 20 objects shown

The output of this procedure i% classes of acoustic in Fig. 2). The X-means unsupervised clustering algorithm

outcomes” — {ci, ..., ey }, which are represented as the leaf'as used for the procedure. X-means extends the standard K-

nodes in a tree structure (see Fig. 5). In our previous worpeans algorithm to automatically estimate the correct num-
[14], the value fora used in step 4 was set to 0.995, Theberof clusters in the dataset [27]. The robot used thisesiyat

same value was used here as well. The valueFaised in to categorize the objects. Six different categorizatiorsen

step 5 was empirically set to 40% of the size of the datas%.ﬁnsnuaed' one for gach_of the six explc_)ratory behaviors.
L . . e results are described in the next section.
that was initially passed to the spectral clustering atbami

V. RESULTS

D. Object Representation and Categorization A. Object Categorization

The frequency with which some acoustic outcomes occur Four of the six behaviors produced acoustic signals that
with different objects can be used to cluster the objects intcould be used for object categorizatiarop block shake
categories. For example, when the robot drops a block overfigp, and drop object The (mostly silent)grasp and move
container, it will hear the sound of the block bouncing isid behaviors produced acoustic signals that were very similar
the container more often than when it drops the block ovefor all objects and the algorithm clustered all 20 objects in
a non-container, in which case it falls on the table. the same object class. Therefore, the results for these two

Given a set oficoustic outcome classe§ ={ci,...,c;} behaviors are not discussed any further. Figure 6 visumlize
extracted from multiple behavioral interactions with atige the categorizations produced by the other four behaviors.



Thedrop blockbehavior produced three clusters that were Cluster 1 Cluster 2 Cluster 3

almost homogeneous. One cluster had containers and the ‘

tall metal non-container (the only misclassified objecheo <5
cluster had the rest of the non-containers; and one clustel@
had the three soft material container baskets. The difteren
between the softness and hardness of the objects’ materialg'
was distinctive enough to create two container categoriesE
(cluster 1 and cluster 3 in Fig. 6). The two wicker baskets
and the styrofoam bucket are made of soft materials which
muffled the block’s sound. When the block fell into a hard Cluster 1
container it bounced around longer and produced a louder
sound. ' . ‘
The shakebehavior produced results similar to the drop £ F— ,
block behavior. In this case, however, there were only two 8 - '
clusters and the three soft material container baskets weré” ‘. ‘G
incorrectly classified as non-containers. These threectbje -
produced very little sound when shaken, even if the block
was inside them. Hence, they sounded similar to the non-
containers, which seldom made noise during this interactio Cluster 1
The tall metal non-container was again misclassified.
Theflip behavior was the most reliable way to discriminate
between containers and non-containers in our experiments o
It produced a perfect classification. Flipping the objeatrov T
produced a distinct sound in the case of containers as the
small block fell onto the table. In the case of non-contaner
no sound was generated as the block was already on the table.
The drop objectbehavior resulted in clusters that were
completely heterogeneous. The behavior did not produee dif
ferent acoustic outcomes for containers and non-continer

B. Evaluating the Categorization using Information Gain

Object

The category information gain was computed in order &
to check whether the robot was able to extract meaningful <
object clusters. The information gain captures how well the
object categories formed by the robot resemble the categjori
specmed by a human. The information _galn 1S hlgh Wherﬁig. 6. Visualization of the object categories formed by toéat for
the category labels assigned to the objects match humdour of the six exploratory behaviors. The quality of the ssidication
provided category labels. It is low otherwise. In other wsyrd depends on _the pehawor that was performeq. flipebehavior produced a
if the information gain is high. then the robot h t iz perfect classification. Thgraspandmovebehaviors both produced only one
irthe "_1 Y a on ga _S gn, the € robot has ca egﬂﬂ cluster with all twenty objects in it so their results are netualized. The
the objects in a meaningful way (even though the robot doegher behaviors produced clusters that were not always se. pocorrect
not know the human words corresponding to the Categorie:ﬁgssifications (detgrmined from ground truth categoryllsipeovided by a

) 1 M ’ . o uman and the majority class of the cluster) are framed in red.

Let AV) =[O"...O0"7] define an object categorization

for behavior By, where O’ is the set of objects in th&"

cluster. Letp;, andp;,. be the estimated probability that an My ted _

object drawn from the subs&®’ will be a container or a IGAY) =H(0) = = H(O")
non-container, respectively. Given a cluster of obje®fs i=1 0]

the Shannon entropy of the cluster is defined as: To get a baseline information gain value for comparison,

i i i i i the information gain was computed for a random labeling.
H(O") = =pclogz(pe) = Phclogz(Phc) That is, the vaI%es fop! andlopilC were estimated afterg
In other words, an object cluster containing mostly conrandomly shuffling the labels of the objects in the clustats

tainers or mostly non-containers will have low entropy(for i = 1 to M) while preserving the number of objects
while a cluster containing an equal number of container® each cluster. The procedure was repeated 100 times to
and non-containers will have the maximum entropy. Hencestimate the mean and the standard deviation. Figure 7 shows
the information gain for the entire object categorizatiorthe information gain for each categorization and compares i
A =[O ... OMs], learned using behavioBy, is given to the corresponding baseline average random information
by the following formula: gain.
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0\ 0\0 Fig. 8. Information gain for the categorizations formed by d¢hep block

shake andflip behaviors as the number of interactions with each object is
increased. This graph was computed by randomly samplinigteractions
from the 100 interactions with each object and re-running kbarning
algorithms on the smaller dataset. This process was repeétéichés for
each value ofN to estimate the mean and standard deviation. Human-
provided category labels were used to compute the informagzn.

Fig. 7. Information gain for the categorizations formed bytea€ the 6
behaviors after the robot has performed 100 interactionis @ach of the 20
objects. For comparison, the figure also shows the averagemation gain
for a random categorization, which was computed by shufflirgdategory
labels of the objects in each cluster 100 times and estimatiagrtean and
the standard deviation of the information gain. Human-pregithbels were

used for this evaluation procedure (these labels were red us any part ; ; _
of the robot's learning process). Three behaviors had aorrimdtion gain This experiment was performed only for the three behav

of zero, which is denoted by the * character. iors that produced categorizations with non-zero infororat
gain (drop block shake or flip) using the entire dataset (see

The figure shows that thiéip and thedrop blockbehaviors Fig. 7). Figure 8 shows that the information gain of the
have the highest information gain with respect to the aweragesulting categorizations first increases and then coegerg
random labeling. The information gain fshakeshows that after only 40 interactions. Therop blockbehavior requires
it performed significantly better than chance, albeit not a0 interactions. The figure also shows that the varianceeof th
well as we expected. The remaining three behaviors hdaformation gain with respect to human labeling converges
zero information gain, illustrating that they did not pregu to zero as the number of interactions increases. This is true
meaningful categorizations. These results show that sorfer all three behaviors.
behaviors can be used to form meaningful object categories.

The next section shows how the number of interactions with ~ V!- CONCLUSIONS AND FUTURE WORK

each object affects the qua“ty of a Categorization_ This paper described a framework that allowed a robot
to interactively categorize objects based on the acoustic

C. Categorization Performance vs. Number of Interactionsgytcomes that they produce when the robot applies different
The number of behavioral interactions used by the catexploratory behaviors on the objects. The framework is thase
gorization procedure was varied to determine if the qualitgpn the idea that knowledge about objects should be grounded
of a categorization improves when more interactions ari@ the behavioral and perceptual repertoire of the robot [8]
performed. Presumably, for behaviors that have infornmatio[9]. A large-scale experimental study with an upper-torso
gain greater than zero the quality of the categorizatioh withumanoid robot was conducted to evaluate this framework.

respect to human labels would improve as the number @f container/non-container categorization task with 2Geoty
interactions increases. This section tests this hypathesi was chosen for this evaluation. The fact that meaningful
The evaluation was performed by randomly samplingategories were produced with so many objects lends further
smaller datasets from the larger dataset described aboeeedence to the hypothesis that a robot can interactively
More specifically, N interactions were sampled at randomcategorize objects using the frequency with which différen
from the 100 interactions performed with each of the 20 obperceptual outcomes occur with each object.
jects. A new categorization was formed from this new dataset The results demonstrate that the categorization accuracy
by: 1) re-training the SOM; 2) converting the spectrograms tis highly dependent on the behavior that the robot used to
state sequences; 3) forming outcome classes from the setppbduce the categorization. Some behaviors simply capture
state sequences using spectral clustering; and 4) catagpri the ‘container’ property better than others. Interestntfe
objects by their acoustic outcome frequencies. The quafity behaviors that best discriminated between containers and
the categorization was determined using the information ganon-containers caused the block to become contained (which
formula described in the previous section. The process wascurred during thedrop block behavior) and to become
repeated 10 times for each value &f in order to estimate uncontained (which occurred during tifigo behavior). The
the mean and standard deviation of the information gaimlrop objectbehavior did not produce outcomes specific to
Figure 8 shows the results. the container object category. This suggests that the-inter



active behaviors that can best discriminate between objegb]
categories are behaviors that capture some categoryfispeci
property. Indeed, the results show that the robot performqgo]
well when category-specific interactions were used.

It was also shown that the robot can split the objects
into meaningful categories even though it does not know the
mapping between these categories and the human words ot
them. What the robot does know, however, is that the objects
in a given category produce similar distributions of ac@ust [1
outcomes. The robot also knows that the differences between
categories can be explained in terms of the frequencieseof tﬂs]
detected acoustic events.

The are several possible directions for future work. For
example, the framework described here performed well wit
data from a single behavior and a single sensory modality
(audio). It would be desirable to investigate how a robot can
combine its observations from executions of different lveha [15]
iors to come up with a single, unified object categorization,
instead of one separate categorization for each behavior.

. 16]

Future work should also examine how a robot can learl
object categories without using explicit object IDs. Arath
direction for future work is to investigate how to combine
observations from multiple modalities (e.g., vision and au
dio). Combining information from multiple modalities is
useful because one modality may capture discriminatividél
information that another modality may miss. For example,
while vision can discriminate between containers and non-
containers using thenovebehavior [22], audio cannot. (19]

[17]
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