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Abstract— This paper describes an approach that a robot can
use to learn to press doorbell buttons. This approach combines
exploratory behaviors with an active learning strategy to enable
the robot to learn faster how and where it should press a button
in order to trigger the buzzer. The framework was tested with
an upper-torso humanoid robot on seven different doorbell
buttons. Three different active learning exploration strategies
were evaluated: random, stimulus-driven, and uncertainty-
driven. The results show that an active learning strategy can
significantly speedup the robot’s learning progress. Among the
three strategies that were evaluated, the uncertainty-driven
strategy was the most effective.

I. INTRODUCTION

Buttons are ubiquitous in human-inhabited environments.
These simple 1-dof widgets are used to control many es-
sential devices and mechanisms. A robot that cannot press
buttons would not be able to use anything controlled by a
button and thus would not be very useful.

Pressing buttons is challenging for robots for two reasons:
1) human and robot fingers differ; and 2) human and robot
senses differ. These difficulties are complicated by the fact
that buttons are designed exclusively for humans. Both their
appearance and their structure are optimized to make human
use more pleasant and efficient. A button that perfectly fits
most human fingers may be too small for a robot. Even
medium-sized buttons can be difficult to press as robotic
fingers made of brushed aluminium slide easily over concave
plastic buttons. Furthermore, the feedback that a button
generates is intended primarily for humans: keyboard keys
click, elevator buttons light up, doorbell buttons ring. A robot
without a microphone cannot confirm that it has pressed a
doorbell button successfully. It is not realistic to expect that
one can write a program that can handle all of these issues
without some adaptation mechanism that takes into account
the embodiment limitations of the robot.

This paper describes a framework that a robot can use
to learn to press buttons autonomously. A large-scale ex-
perimental study with an upper-torso humanoid robot (see
Fig. 1) was conducted to evaluate the framework. The
robot explored seven doorbell buttons and perceived the
proprioceptive, auditory, and visual feedback during these
interactions. Even though the experiments were performed
with doorbell buttons, which provide auditory feedback, the
framework can be used with other buttons as well.
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Fig. 1. The upper-torso humanoid robot used in the experiments, shown
here looking at the experimental fixture with the buttons.

This work evaluates three different exploration strategies
that a robot can use to learn to press buttons faster: random,
stimulus-driven, and uncertainty-driven. Under the random
strategy the robot did not use what it learned in the past to
change the behaviors that it performed. Under the stimulus-
driven exploration strategy the robot performed a pushing
behavior that was most likely to trigger the buzzer based
on prior experience. Under the uncertainty-driven exploration
strategy the robot performed a pushing behavior for which it
was most uncertain whether it will trigger the buzzer or not.

The robot tested the performance of each of the three
strategies on two learning tasks: 1) predicting if a behavior
will trigger the buzzer; and 2) predicting whether pushing
a button in a specific location in visual space will trigger
it. For these two tasks it was estimated how much training
is required for the robot to achieve a given performance
level. The results indicate that for both learning tasks the
uncertainty-driven exploration strategy is the most efficient
of the three strategies. Using this strategy, the robot achieved
its best performance after 50-100 trials. This fact shows that
the learning framework works in real time.

II. RELATED WORK
A. Developmental Psychology

Hauf and Ascherleben [1] demonstrated that 9 months old
human infants anticipate the acoustic and visual events as-
sociated with pressing different colored buttons. The broader
goal of their work was to show that infants use anticipation of
action outcomes to control their actions. Hauf et al. [2] found
that human infants become more interested in an object after



they have had the chance to play with it. They observed that
7-11 month old infants are indifferent to objects or people
who manipulate these objects before they have played with
the objects. After playing, observing how people manipulate
the objects became interesting for the infants. E.J. Gibson [3]
showed that humans use observations obtained from active
exploration as one of the key sources of knowledge about the
world and, in particular, about the affordances of objects.

While our approach is inspired by research studies in De-
velopmental Psychology, learning outcomes are not compa-
rable between the robot and an infant. The robot’s behavioral
repertoire and the model for behavior outcomes were selected
specifically to learn to press buttons. Infants have much more
general goals, much more sophisticated behaviors, and much
more general models for interpreting their outcomes.

B. Robotics

Previous research on pressing buttons in robotics can be
divided into three principal categories based on the specific
problems they focus on.

1) Detecting buttons is hard, but pressing them is easy.
Work in this category presupposes that the physical act of
pressing buttons is straightforward once they are detected.
A key characteristic of approaches from this category is
that the button feedback — either tactile sensations from
the click itself or feedback from the device controlled by
the button — is ignored. The main focus is on training
computer vision models for detecting buttons before the robot
has attempted to press even a single button. Typically, the
papers in this category report results for detecting elevator
buttons [4] [5] [6]. In some cases, the detection performance
could be improved using the assumption that elevator buttons
are arranged in a grid pattern [5] [6].

2) Both pressing and detecting buttons is hard. Approaches
from this category do not attempt to press or detect buttons
as they are. Instead, these approaches seek to modify the
environment to simplify the task of programming the robot.
For example, reflective markers [7] or RFID tags [8] can
be attached to buttons. These tags contain meta-information
that informs the robot how and where to press the button and
what would happen if it is pressed. The main focus of this
research is on possible robotic applications in the home and
environmental augmentations that enable them [8].

3) Button pressing as a social learning task. Research in
this category has focused on pressing buttons in the presence
of humans. It was shown that a robot can interpret human-
provided cues in order to press a button [9]. It was also
shown that a robot can learn to press a button from human
demonstrations [10]. The main focus of these studies was on
learning to detect and interpret human social cues and not on
learning to press buttons autonomously.

In contrast with previous approaches, our work focuses on
the physical task of pressing a button. The problem is solved
without a prior visual model for detecting a button, without

(a) The robot pushing a button.

(b) Experimental fixture (back).

Fig. 2. The experimental setup.

relying on human-provided cues, and without environmental
augmentations. Instead, the robot learns to press a button
autonomously by analyzing feedback generated by the button
as the robot performs exploratory behaviors.

Our robot used active learning exploration strategies to
learn to press the buttons. Similar strategies have been
formulated in previous work using intrinsically-motivated
reinforcement learning [11] [12] [13], and POMDPs [14].
Active learning has been used successfully for grasping
objects [15] [16] [17]. In contrast with previous applications,
the exploration strategies in our work are applied to a robotic
manipulation task in the real world and operate on the
information extracted from multiple modalities in real time.

III. EXPERIMENTAL SETUP

A. Robot

The experiments were performed with the upper-torso
humanoid robot shown in Fig. 2. The robot’s arms were two
Barrett Whole Arm Manipulators (WAMs). The end effector
of each arm was a BH8-262 Barrett Hand. A color marker
was attached to the tip of the robot’s finger to simplify its
visual tracking (see Fig. 3).

B. Buttons and Fixture

The robot experimented with 7 doorbell buttons, which
were mounted on a wooden fixture (see Fig. 2). The middle
segment of the fixture could slide horizontally so that a
different button could be presented to the robot during
various trials. Behind the wall, the currently explored button
was connected to a buzzer and a battery that powered it
(see Fig. 2(b)). The buttons were selected from the ones avail-
able in stock at a local Lowe’s store (a home improvement
store).
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Fig. 3. One of the trials performed by the robot. The spectrogram of the sound is matched to the corresponding video frames for each of the five pushing

behaviors. The robot’s field of view is larger than the images shown here, which were cropped to show only the area around the button.

C. Experimental Trials

The robot used 3 different exploration strategies, which are
described in Section IV-A. For each strategy the robot per-
formed 200 experimental trials with each button. In addition
to that, the robot collected a test set of 400 trials. The test
set was collected using the random strategy described in Sec-
tion I'V-A and the data was used exclusively for evaluating the
performance of the 3 strategies. Thus, the robot performed
3 x 200 + 400 = 1000 experimental trials with each of the 7
buttons, or 7000 total trials.

Each trial consisted of 5 pushing behaviors directed at
the button or the area around it (see Fig. 3). The starting
position for each push was the end position of the previous
push. The end point of the push was selected based on the
learning strategy that was used. To randomize the starting
position of each trial, the robot started with a random push
that was not counted toward the 5 pushes in the trial. Each
trial lasted for approximately 18-20 seconds (the setup time
was 3—5 seconds and each behavior took ~3 seconds). All
1000 trials with each button were performed one after another
without interruption. The data collection for each button took
approximately 6 hours.

Another way to describe this dataset is as follows: the
robot performed 5 pushes x 1000 times x 7 buttons =
35000 pushes. This large dataset was necessary for the proper
evaluation of the three learning strategies. As described
below, the robot learned to press even the most challenging
buttons in far fewer trials.

D. Sensory Data

During the experiments the robot recorded visual, auditory,
and proprioceptive data. The data was processed in real time,
but it was also stored to disk for additional offline analysis.
Vision data was recorded at 10 frames per second from the
robot’s left eye (a Logitech QuickCam Pro 4000 webcam) at
640 x 480 resolution. An Audio-Technica U853AW Hanging
Microphone, mounted in the robot’s head, was used to record
audio at 44.1 KHz. Proprioceptive data, in the form of joint
position and torque readings, was recorded from the left
WAM arm at 500 Hz.

As the robot performed the experiments, it detected and
timestamped “interesting” proprioceptive and auditory events.
If the torque magnitude exceeded a predefined limit, the
robot recorded a proprioceptive event, interrupted the current
pushing behavior, and started the next one. Besides providing
behavioral boundaries, proprioceptive events were also used
for predicting the outcomes of pushing behaviors in visual
space, as described in Section V-D.2.

The robot recorded an auditory event when it heard the
buzzer. This was done by analyzing the spectrograms of
candidate regions in the audio stream, which were selected
if the volume of the audio exceeded a predefined threshold.
The maximum duration of a region was set to 0.1 seconds.
If the robot detected more than one candidate region for
any behavior, it recorded an auditory event only for the first
of these regions. To limit the computational load, candidate
regions shorter than 0.03 seconds were ignored. The Discrete
Fourier Transform (DFT) was calculated for every region to
obtain a spectrogram. A frequency component histogram with
20 bins was calculated for every spectrogram and used as
an input to a cascade of two classifiers, which decided if a
region contained a buzzing sound. The cascade consisted of
the Naive Bayes and the K* classifier [18]. The structure of
the cascade was determined from a separate pilot study, in
which a training set with “buzzer” and “non-buzzer” sounds
was labeled manually.

E. Behavioral Parametrization

The robot started each trial from a fixed reference arm
position, for which its fingertip was above a button. To
randomize the start of the exploration, the robot randomly
pushed in the area around the button at the start of each trial.
This push did not count towards the exploration, even if it
happened to trigger the buzzer. Next, the robot performed 5
exploratory pushing behaviors in the vicinity of the button.
The robot started each of these behaviors from the end
position of the previous push, and selected the endpoint using
the current exploration strategy as described in Section I'V-A.
To finish the current trial and prepare for the next one, the
robot moved its finger back to the reference arm position.



Each pushing behavior consisted of two arm movements:
a backup and a following push. The purpose of the backup
movement was to enable the robot to push a button even
if it missed it during previous pushes. Some of the buttons
protruded from the board, so the robot could not push them
without a backup movement once it missed them. The backup
was always directed at the fixed reference arm position.

Each behavior was parametrized by a vector € RS,
which was a concatenation of two vectors (") and 2(P) in the
robot’s Cartesian space. z(*) was the direction of the backup
movement after the finger hit the button, or the wall, and z(P)
was the direction of the subsequent push. Even though the
reference arm position was fixed, the parametrization was
different for behaviors that differed by their start or end
positions on the surface of the experimental fixture.

To represent the result of each behavior the robot used a set
of outcomes O = {buzzer, no buzzer}. The robot recorded a
buzzer outcome when an auditory event was observed during
a behavior. Otherwise, a no buzzer outcome was recorded.

IV. LEARNING METHODOLOGY

Over the course of interacting with a button, the robot
recorded labeled data points (b;,0;), which indicate that
outcome o; was observed when performing a behavior
parametrized by the vector b;. Using this data, a predictive
model M was incrementally trained to estimate the con-
ditional probability P(o|b) of observing outcome o given
behavioral parameters b.

A. Exploration Strategies

Because the predictive model M is updated incrementally,
the robot’s controller can use it to choose the parameters of
the next pushing behavior. To do that, after each behavior, a
candidate set 21, ...,y € RS is generated, which represents
a set of possible behaviors that the robot can perform.
The value of NV was set to 25. Three different exploration
strategies that select the next behavior z; € {z1,...,zn}
were evaluated.

1) Random Exploration: Under this exploration strat-
egy, the robot always picks the first candidate in the set
{z1,...,zN}, 1e., j = 1. Because the candidate set is gener-
ated randomly, this strategy results in a random exploration.

2) Stimulus-Driven Exploration: The second exploration
strategy selects the behavior from the candidate set that
maximizes the expected likelihood of detecting a buzzer
sound, as estimated by the robot’s predictive model M. In
other words, a candidate behavior that is likely to push the
button and cause the buzzer to go off is favored over one that
is not. Formally, this strategy selects the candidate behavior
xj € {z1,...,xn} such that:

j = argmax Pr(buzzer|x;).
i=1,...,N
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Fig. 4. Histograms of the temporal intervals between auditory events and
proprioceptive events (a) and vice versa (b). These were calculated over all
5000 pushing behaviors that the robot performed with button 1. The bin size
of each histogram is 50 ms. The histograms show that the robot first hears
the buzzer and then feels that the button is fully pressed.

3) Uncertainty-Driven Exploration: The last exploration
strategy selects the behavior, for which the robot’s model M
is most uncertain regarding its outcome. For each candidate
behavior z;, the uncertainty is quantified using the entropy
of the conditional distribution over the set of outcomes in O.
Formally, the uncertainty-driven strategy selects behavior x;
according to:

j = argmax Z — Pr(o|x;) log(Pr(o|z;)).
i=1,...N “=5,

B. Predictive Model

A k-NN classifier with £k = 5 was used to implement the
predictive model M that estimated the conditional probability
distribution over outcomes given the behavioral parameters.
Given z € RY as input, the classifier estimated the conditional
probability Pr(o|x) from the distribution of outcomes of the k
nearest neighbors to z in the robot’s prior experience, which
consists of (b;,0;) tuples. For example, if 3 out of 5 nearest
neighbors of x have the buzzer outcome, then the probability
estimate for Pr(buzzer|x) is 3/5.

Two key factors motivated the choice of this classifier.
First, it can be updated incrementally as more training
instances become available. Second, the k-NN classifier was
among the best-performing classifiers for a similar task
during a pilot study.

V. RESULTS

A. Temporal Intervals between Modalities

For the trials in which the buzzer went off, the robot
measured the temporal intervals between proprioceptive and
auditory events. Fig. 4 shows a histogram of these temporal
delays for one of the buttons. Fig. 4(b) is a mirror copy
of Fig. 4(a), which means that an auditory event is almost
always followed by a proprioceptive event. The opposite is
not true (see Fig. 5).

In general, the robot first heard the buzzer and then
detected that it could not press the button any further. The



(a) Random

(c) Uncertainty-Driven

(b) Stimulus-Driven

Fig. 5. Auditory (red) and proprioceptive (blue) events localized in space
for each of the three learning strategies for button 3 (top row) and button 7
(bottom row).

average temporal delay was consistently around 250ms. This
was true for all buttons as shown in Fig. 8(d). Some buttons
were harder to press, e.g., buttons 3 and 4, for which the
surface area of the functional part of the button was smaller
than that for the other buttons. For these buttons there were
fewer entries in the bins of their histograms.

B. Localizing Events in Space

The robot combined the timestamps of the video frames
with the timestamps associated with auditory and proprio-
ceptive events. In this way, the robot’s fingertip could be
localized in visual space during these events. The spatial
distributions of these events for the best performing explo-
ration strategy for all buttons are shown in Fig. 8(b) and
8(c). To highlight the differences in the spatial distributions of
events for different learning strategies, these distributions are
shown for two of the buttons for all three strategies in Fig. 5.
Both active learning strategies produced more auditory events
than the random strategy for the same number of pushing
behaviors.

In many cases the robot pressed buttons with parts of its
finger other than its fingertip (see Fig. 6). This and the fact
that visual tracking was done only for the fingertip explain
the apparent scattering of the points in Fig. 5, 8(b), and
8(c). Finally, the parameters for the pushing behaviors were
sampled uniformly in joint space, which resulted in less than
uniform sampling in Cartesian and visual space. In particular,
the main diagonal was oversampled, as can be seen in Fig. 5.
Diagonal oversampling did not influence the auditory event
locations significantly, which can be seen in Fig. 8(c).

C. Performance Measures

The performance was measured on the task of predicting
whether a pushing behavior would trigger an auditory event.
The k-NN classifier with £ = 5 generated these predictions
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Fig. 6. Video frames from the dataset that show different ways in which
the robot was able to ring the doorbell buttons. Note that the red marker on
the fingertip does not have to overlap with the pressable part of the button.

given either the behavioral parameter vector x € RS or the 2D
tracking coordinates of the robot’s fingertip. The predictions
were compared against the “ground truth” — whether the robot
detected the buzzer sound during this behavior or not.

The robot performed 400 trials to collect the evaluation set.
Each trial consisted of 5 random pushing behaviors. Thus,
there were 2000 pushing behaviors in the test set for each
button. Out of the 2000 test behaviors for button 3, the buzzer
sound was detected during only 70 of them. A naive approach
can predict that no buzzer was detected for all 2000 behaviors
and reach a 96.5% accuracy. These predictions, however,
would be useless despite the high accuracy.

A performance measure that is more adequate in this case
is the Cohen’s kappa coefficient [19], which compares the
model accuracy against chance accuracy as follows:

_ Pr(a) — Pr(e)
1—Pr(e) ~’

where Pr(a) is the raw accuracy, i.e., the probability of a
correct prediction by the classifier, and Pr(e) is the prob-
ability of a correct prediction by chance. In our example,
Pr(a) = Pr(e) = 3323, and & = 0. Another example:
suppose that there were 52 true positives, 30 false positives,

18 false negatives, and 1900 true negatives. In this case,
Pr(a) = 22990 — 0.976, Pr(e) = 5705552+ 1330 1918 —
0.92686, and « =~ 0.67. Thus, the kappa coefficient measures
the performance more adequately than the raw accuracy.

There are no universally accepted rules for interpreting the
numerical values of the x coefficient. Landis and Koch [20]
suggested metrics based on personal opinion (see Table I).
According to these metrics, the performance for predictions
in proprioceptive space shown in Fig. 8(e) mostly falls
into the “moderate” category, while the performance for
predictions in visual space (see Fig. 8(f)) mostly falls into
the “substantial” category.




K Strength of Agreement

0.81 — 1.00 Almost Perfect
0.61 — 0.80 Substantial
0.41 - 0.60 Moderate
0.21 - 0.40 Fair
0.00 — 0.20 Slight

<0 Poor

TABLE I

TABLE FOR INTERPRETING k COEFFICIENT VALUES PROPOSED BY [20].

D. Learning to Predict Behavioral Outcomes

The robot used the collected data to predict if a pushing
behavior would trigger an auditory event. For each of the
three learning strategies, and for each of the buttons, the
number of available learning trials was varied to find out how
much training is required to achieve a specific performance
level. The predictions were evaluated on the 400 trials from
the testing set.

1) Using Proprioceptive Behavioral Parameters: The
robot trained the same model based on the k-NN classifier
that was used by the learning strategies (see Section IV-
A) to estimate the conditional probability distribution of
outcomes given the behavioral parameter vector z € RS,
For button 2, the results of this evaluation are shown in
Fig. 7(a). The results for all buttons are shown in Fig. 8(e).
For all buttons the model trained for the uncertainty-driven
exploration strategy was either the top performer or one of
the top performers.

For button 3 — the hardest button to press — all strategies
failed to achieve a decent learning performance in 200 train-
ing trials. This suggests that predicting behavioral outcomes
using only behavioral parameters in proprioceptive space
is not always possible. Using other modalities and more
sophisticated learning approaches may improve learning per-
formance, as shown below.

2) Using Visual Press Locations: Fig. 4 shows that au-
ditory events are shortly followed by proprioceptive events.
Therefore, the question arises: How much training does the
robot need to learn to tell if the buzzer will sound if the
button is pressed at a specific location in visual space?

To answer this question, a model based on the k-NN
classifier with k = 5, was trained to estimate the conditional
probability distribution of behavioral outcomes given the
2D position of the robot’s finger in visual space when the
proprioceptive event occurred. Behaviors that produced no
proprioceptive events were not considered for learning or
evaluation. This model was similar to the predictive model
used in Section IV-A and Section V-D.1.

The learning performance in visual space is substantially
better than in proprioceptive space. The learning problem in
proprioceptive space, however, is substantially more difficult
as the location of the push in visual space is unknown at the
start of the behavior and depends on both the button and the
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Fig. 7. Learning curves for predicting if an auditory event will be heard
given: (a) the kinematic parameters of a pushing behavior in proprioceptive
space; and (b) the location of the robot’s fingertip in visual space. The results
are for button 2.

behavior. This difference in problem complexity explains the
difference in learning performance.

The evaluation results are shown for one button in Fig. 7(b)
and for all buttons in Fig. 8(f). For all buttons the uncertainty-
driven active learning strategy performed the best. For some
of the buttons it was the best by a wide margin. With the
uncertainty-driven active learning strategy approximately 50-
100 trials were sufficient to achieve the best performance for
most of the buttons.

VI. CONCLUSIONS AND FUTURE WORK

This paper described a framework that a robot can use to
learn to press buttons. The key input for learning this task
was the multimodal feedback perceived by the robot as it
performed exploratory behaviors directed at the buttons. The
framework was tested on doorbell buttons, which generated
auditory feedback, but it can be applied to other types of
buttons as well.

This paper evaluated three strategies that a robot can use
to learn how to press buttons in real time: random, stimulus-
driven, and uncertainty-driven. The random strategy always
selected a random push. The stimulus-driven strategy selected
a behavior that was most likely to press the button. The
uncertainty-driven strategy selected the behavior with the
most uncertain outcome.

Each of the three learning strategies was evaluated on
two tasks: 1) predicting if pressing the button at a specific
spatial location would cause the buzzer to go off; and 2)
predicting if a behavior would successfully press a button.
Overall, the uncertainty-driven exploration strategy learned
faster than each of the alternatives for both tasks. For the
“hardest” button in the dataset (button 3) both active learning
strategies learned much faster than the random strategy in
visual space. Similar results were observed in proprioceptive
space for button 4 (the one with the smallest pressable part).
For both learning tasks, and for most buttons, the uncertainty-
driven strategy achieved its best performance in 50-100 trials.

In our opinion, there are two reasons for the superior per-
formance of the uncertainty-driven strategy: 1) the other two
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(a) The seven doorbell buttons explored by the robot.
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(c) Auditory events localized in visual space for each of the buttons using the uncertainty-driven strategy.
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(d) Histograms of the temporal intervals between auditory and proprioceptive events for each button. The bin size of each histogram is 50 ms.
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(e) Learning curves for the task of predicting if a given pushing behavior will trigger an auditory event as a function of the number of learning
trials (x-axis). The performance measure (y-axis) is the kappa statistic estimated from a separate evaluation set of 400 trials. The curves for the
random, stimulus-driven, and uncertainty-driven strategies are shown in blue, green, and red color, respectively.
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(f) Learning curves for the task of predicting if any behavior for which a proprioceptive event is detected in a specific region of visual space will
trigger an auditory event as a function of the number of learning trials (x-axis). The performance measure (y-axis) is the kappa statistic, which

was estimated from a separate evaluation set of 400 trials. The curves for the random, stimulus-driven, and uncertainty-driven strategy are shown
in blue, green, and red color, respectively.

Fig. 8. Summary of the experimental results for all buttons. See the text for more details.



strategies do not take the overall structure of the predictive
model into account; and 2) picking an action with the most
uncertain outcome is an approximation for minimizing the
uncertainty of future queries to the predictive model. Indeed,
the random strategy does not really explore as its choices do
not depend on past observations. The stimulus-driven strategy
focuses only on those behaviors that trigger the buzzer —
it is not interested in the overall structure of the predictive
model. Only the uncertainty-driven strategy uses the overall
structure of the predictive model for both positive and nega-
tive outcomes. Future work may compare the uncertainty-
driven strategy with more sophisticated strategies that are
specifically focused on minimizing the uncertainty of future
queries to the predictive model, e.g., a strategy that plans
future behaviors to achieve this.

The framework already can localize auditory and pro-
prioceptive events in visual space as the robot explores a
button. Future work can establish a correlation between the
visual features of the button and the spatial distributions of
sensory events. The robot can use this information to learn
a visual model that can segment an image of a button into
functional parts. For example, the robot can use the extracted
visual features to identify the functional parts of novel
buttons without the need to explore them first. Modifying
the methodology to work with light switches is yet another
feasible direction for future work.
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