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Abstract— This paper describes an approach which a robot
can use to learn the effects of its actions with a tool, as well
as identify which frames of reference are useful for predicting
these effects. The robot learns the tool representation during
a behavioral babbling stage in which it randomly explores the
space of its actions and perceives their effects. The experimental
results show that the robot is able to learn a compact and
accurate model of how its tool actions would affect the position
of a target object. Furthermore, the model learned by the
robot can generalize and perform well even with tools that the
robot has never seen before. Experiments were conducted in
a dynamics robot simulator. Two different learning algorithms
and five different frames of reference were evaluated based on
their generalization performance.

Index Terms— Developmental Robotics, Affordances, Learn-
ing of Affordances, Tool Affordances.

I. INTRODUCTION

The term affordance was coined by J. J. Gibson who paid
special attention in his research to environmental objects and
the types of properties that living organisms perceive about
them. Gibson defines affordances as action possibilities that
are present in the environment and can be perceived by an
individual [1]. In the context of tool use, the affordances
of a tool correspond to the possible uses that the tool
affords to an organism. Furthermore, Gibson also argues that
humans naturally perceive affordances when they encounter
environmental objects [1].

Similar observations have been made by Jean Piaget [2]
who formulated one of the most influential developmental
theories of the 20-th century. According to Piaget environ-
mental objects play an important role in human development.
In the early stages of development, the actions of a child are
directed at objects with the goal of establishing associations
between its actions and outcomes in the external world [2]. In
the terminology of Gibson this would be equivalent to trying
to learn the affordances of the objects. Similar mechanisms
are at play when the child learns to use tools [2].

In previous work, Stoytchev [3] introduced a compu-
tational framework for a behavior-grounded representation
of tools. This paper extends that model by describing an
approach which a robot can use to learn the effects of its
actions with a tool, as well as detect the features in its

sensory stream which are useful for predicting these effects.
The learned model constitutes a compact representation of
the action possibilities that the tool affords the robot. The
robot learns the representation by exploring the space of
its actions with the tool and observing their effects. The
predictive model is grounded in the robot’s own perceptual
and behavioral repertoire, allowing the robot to autonomously
test and verify its knowledge of the tool. In addition, the
framework presented in this paper allows the robot to evaluate
the predictive power of different frames of reference. There is
evidence that biological brains maintain multiple coordinate
frames in order to coordinate bodily movements [4], [5].
Gallistel, for example, suggests that intelligent behavior is
about learning how to coordinate these frames [5].

Once a model is learned, the robot is tested on how well
it can predict the consequences of its actions using this
model. Furthermore, the generalization abilities of the learned
models are evaluated. In abstract terms, generalization can
be defined as the ability to correctly estimate the values of a
given function at points in its input space for which data is
not available [6]. In this paper, this function is a model for
the observable consequences of executing a particular action
with a given tool. Different learning algorithms and frames
of reference are evaluated in the course of the experiments.

II. RELATED WORK

A. Tool Experiments with Animals
Tool-using experiments have been used for the last 90 years

to test the intelligence of primates [7], [8], [9]. Wolfgang
Köhler [7] conducted one of the first systematic studies of
tool-using behaviors in primates. His experiments required
the use of tools such as sticks, hooks, boxes, and ladders in
order to complete a given task and extract a reward in the
form of food.

Povinelli et al. [8] replicated many of the experiments
conducted by Köhler and analyzed the results using statistical
techniques. They concluded that chimpanzees do not reason
about actions and tool tasks in abstract terms such as mass,
force, or gravity. Another conclusion was that the primates
solved tool-using tasks by extracting simple rules from their
experience, e.g., “contact leads to movement” [8].



More recently, Ishibashi et al. [10] conducted experiments
with macaque monkeys which demonstrate the ability of
primates to generalize their tool related knowledge to novel
tools. Their study shows that macaque monkeys can use a
novel tool provided that they have encountered a similar
tool in the past. For example, once the monkey has been
exposed to a T-stick tool (see Figure 2), it was also capable
of performing the task with other similar tools.

The experimental setup described in Section IV was influ-
enced by the setup used by Ishibashi et al. [10].

B. Tool Experiments with Robots
Our previous work [3] introduced a method for represent-

ing the affordances of tools by grounding the representation
in the behavioral and perceptual repertoire of the robot. In
this representation the affordances of the tool are expressed
in concrete terms (e.g., behaviors and observable outcomes)
that are directly available to the robot. Therefore, the robot
is able to directly test and verify its tool representation. This
is consistent with the verification principle which states that
a robot should not attempt to learn anything that it cannot
verify for itself [11], [12].

The current implementation of the behavior-grounded ap-
proach [3] suffers from several limitations. First, the approach
keeps the learned affordances in a lookup table and does
not allow for predictions to be computed for data points
that have not already been included. Second, the method
does not perform any generalization across multiple tools.
As a result, the exploration of novel tools starts completely
from scratch, even though the new tool may be similar to an
already explored tool.

This paper attempts to overcome these limitations by
introducing a framework which allows the robot to learn a
compact predictive model for the affordances of a tool. This
model is also grounded in the robot’s own perceptual and
behavioral abilities but in addition to that it also has certain
generalization properties.

III. PROBLEM STATEMENT

The learning task of the robot is described with the help
of the following notation. Let At be the action performed by
the robot at time t. Furthermore, let St = [s1, s2,. . . , sn] be a
vector of sensory inputs received by the robot at time t. The
robot can extract features from its raw sensory information
with the help of perceptual functions Φ1, . . ., Φm. These
functions transform the original sensory input vector, St, into
another vector, i.e., Φi(St) → Ut, where Ut = [u1,. . . , uk],
and k � n.

A change detection function, ∆f , determines if some event
of interest (e.g., visual movement) has occurred. The function
is defined as ∆f (St−k, St) → Ct where Ct is is a vector
describing the change, and St−k and St are the sensory input
vectors at times t − k and t, respectively.

The task of the robot is to learn a model Mf such
that Mf (At,Φi(St)) → ∆f (St, St+k) for some perceptual
function Φi. In other words, the robot needs to learn a
predictive model of the future consequences (as measured by
the change detection function ∆f ) of executing action At,
given the current sensory input vector St which is modified
by the perceptual function Φi.

IV. EXPERIMENTAL SETUP

A. Simulator, Robot, and Tools
All experiments were performed using the open-source

dynamic robot simulator BREVE [13]. The simulated robot,
the tools, and the objects in the simulation were modeled as
rigid bodies. The physics parameters of the simulator such as
gravity constant and coefficient of friction were set to their
default values.

The robot is a simulated arm with 6 degrees of freedom:
a slider joint at the base, waist roll, shoulder pitch, elbow
pitch, wrist pitch, and wrist roll. The robot also has a gripper
attached to the wrist. A snapshot of the simulated robot arm
is shown in Figure 1.a.

Six different tools were used in the experiments as shown
in Figure 2. Each tool was colored in red. Two yellow
markers were also placed on each tool (see Figure 2). The
marker at the front end of the tool will be referred to as
marker #1, while the marker closest to the robot arm will be
referred to as marker #2. The last object in the simulation
is a small cylindrical puck which can be moved by the tool
when the robot performs an action.

B. Sensory Input and Frames of Reference
The robot’s sensory input, St, is extracted from a cam-

era positioned directly overhead and looking downward. A
sample visual input can be seen in Figure 1.b. Each pixel

Fig. 1. a) Snapshot of the robot arm in the dynamics simulator; b) View
from the robot’s simulated camera.

Fig. 2. The six different tools used by the robot: 1) T-stick; 2) L-stick; 3)
L-hook; 4) Stick; 5) T-hook; and 6) Paddle.



Fig. 3. A view from the robot’s simulated camera and the computation of
the perceptual functions Φp(St) and Φg(St) from the sensory input St.

in the image is labeled as belonging to either the tool, the
puck, the gripper, the arm, or the background. Formally,
St = {T, P,G,A,B}792×482 where 792 × 482 is the size of
the simulated camera image, and T , P , G, A, and B stand
for “Tool”, “Puck”, “Gripper”, “Arm”, and “Background”
respectively. The robot implicitly knows that the pixels cor-
responding to the two tool markers are part of the tool.

The raw sensory input is too large to be useful for the
purposes of generalization. Thus, it might be beneficial for
the robot to focus only on a small part of its sensory input
for prediction. For example, when writing with a pen, it is
more helpful to focus on its tip as opposed to some object in
the background. The robot is capable of using five different
frames of reference for prediction. The first of these is a
reference frame centered on the camera image that the robot
receives as sensory input. The other four frames of reference
are centered at one of the following objects of interest: the
gripper, tool marker #1, tool marker #2, or the puck.

The different frames of reference are associated with five
perceptual functions: Φc, Φg , Φt1 , Φt2 , Φp. The functions are
computed in the following way: a window of size 300× 300
is centered at either the image center (Φc), the gripper (Φg),
tool marker #1 (Φt1 ), tool marker #2 (Φt2 ), or the puck (Φp).
The window is cropped from the image St and scaled down
to size 15 × 15. The resulting image is returned as a 225-
dimensional output of the perceptual function. Figure 3 shows
this process for the perceptual functions Φp and Φg . The
predictive power of each frame of reference is evaluated for
different tools in Section VI.
C. Change Detection Function

The robot is equipped with one change detection function,
∆θ, which tracks the direction of the puck’s displacement
over time. The function takes two sensory vectors, St and
St+k, as input and returns a tuple [Dx, Dy], such that Dx and
Dy are the x and y displacements of the puck in the robot’s
field of view between times t and t + k, where k is set to
10 frames. This change detection functions allows the robot
to detect whether the puck is displaced in a given direction
as a result of the robot’s action with the tool. Note that the

output of the change detection function does not depend on
which frame of reference the robot is using for building its
model.
D. Behavioral Babbling and Data Collection

The robot collects sample data about the effects of the tool
on the puck through behavioral babbling. Each robot action
consists of grasping the tool at a prespecified position, and
then sliding it in the horizontal plane by some given x and
y offsets, which are the parameters of the action.

Each trial of the behavioral babbling process is performed
as follows. First, the tool is positioned in front of the robot
and the puck is placed in a random location around the tool.
In each trial the starting position of the tool is offset to the
left or the right of the robot by a random distance. After
grasping the tool, the robot slides its gripper while holding
the tool in the horizontal plane (this is the action At). The
x and y offsets for At are chosen randomly from a uniform
distribution. The tool movement continues for 30 frames in
the chosen direction or until the movement is completed.

The sensory input of the robot, St, along with the outputs
of the five perceptual functions are recorded for each frame.
The values of the change detection function ∆θ are also
recorded if the attractor object moves as a result of the
robot’s action. Each recorded data entry corresponds to an
event of interest that the robot has observed and constitutes a
tuple of the form 〈At,Φi(St),∆θ(St, St+k)〉, where Φi is the
perceptual function being used, and At is the robot’s action
parametrized by x and y. Figure 4 visualizes a trial with the
T-stick tool. Using this data, the robot has to learn a predictive
model which takes as input At and Φi(St) and outputs an
estimate for the future consequences of the action At, as
measured by the change detection function ∆θ. The next
section describes the learning methodology used to achieve
that.

V. LEARNING METHODOLOGY

As it was described in the previous section, the task of the
robot is to learn a model which can predict the outcomes of
its tool actions. The inputs of such a model (consisting of
〈At,Φi(St)〉) will be referred to as the set of attributes and

St

At

St+k

Predicted
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Fig. 4. A sample trial with the T-stick tool. At the start of the trial (left),
the robot makes a prediction using the model Mθ regarding the outcome
of its action, At. Once movement of the puck is detected with the change
detection function ∆θ (right), the robot is able to verify its prediction and
record the observed outcome.



the output (∆θ(St, St+k)) as the class label. Two different
learning approaches were used as described below.

A. k-Nearest Neighbor
The first approach does not construct an explicit model

from the training data. Instead, it stores all data points (or
instances) and their class labels and only uses them when
the model is asked to make a prediction. Models that have
this property fall in the category of lazy learning or memory-
based learning [14], [15].

The k Nearest-Neighbor (k-NN) algorithm used here finds
the k closest neighbors of the new point and assigns a class
label which is generally a smoothed average of the labels
belonging to the k neighbors. The k-NN algorithm is simple
and relatively robust to noise. However, without the introduc-
tion of special distance and attribute weighting functions, the
model can perform poorly when there are irrelevant attributes.
Nevertheless, k-NN can provide near-optimal classification
and regression for many types of problems.

B. Decision Tree
The second learning approach used in this paper constructs

a compact model of the data by extracting a set of structured
rules (or tests). These tests can later be used to quickly
classify a new instance. The classic example of such an
approach is the decision tree [16]. A decision tree can be
constructed recursively as follows: 1) start with the entire set
of data instances at the root of the tree; 2) recursively add
nodes to the tree by partitioning the set into subsets based on
tests that yield the minimum expected entropy; 3) stop the
recursion when the entropy of every leaf node is minimized.

Each non-leaf node in the decision tree contains a test
on one or more of the attributes. Once the decision tree is
constructed it can be used to generate simple if-then rules
which can serve as predictors of future outcomes. In the case
of numeric prediction problems, the leaf node might contain
a linear regression model which is then used to compute the
predicted value [17].

C. Model Evaluation
Once the robot has conducted a specified number of

trials, it learns the model Mθ for the corresponding change
detection function ∆θ. The implementations of the decision
tree and k-NN models included in the WEKA open source
machine learning package [18] were used in this work. The
models were evaluated by performing 3-fold cross-validation
on the recorded data. The set of trials was split into three
disjoint sets and at each iteration of the evaluation process the
data from two of these sets was used for training the model
and the data from the remaining set was used for evaluation.
To assess the performance of the Mθ model, the angle of the
movement direction of the puck was compared to the angle of
the predicted direction. A prediction was considered good if
the error (in terms of angular degrees) was less than 20◦. The

TABLE I
PERCENTAGE OF GOOD PREDICTIONS FOR ∆θ ACROSS DIFFERENT

FRAMES OF REFERENCE (DECISION TREE ALGORITHM)

Tool Frame of Reference
Φc Φg Φt1 Φt2 Φp

T-stick 51.3% 44.1% 71.4% 57.6% 94.4%
L-stick 40.6% 52.1% 78.8% 68.6% 92.7%
L-hook 47.9% 50.7% 67.3% 56.1% 87.2%
Stick 72.1% 69.3% 86.2% 85.8% 90.2%

T-hook 63.4% 43.2% 57.4% 49.4% 88.1%
Paddle 41.7% 50.5% 59.4% 53.7% 85.2%

TABLE II
PERCENTAGE OF GOOD PREDICTIONS FOR ∆θ ACROSS DIFFERENT

FRAMES OF REFERENCE (K-NN LEARNING ALGORITHM)

Tool Frame of Reference
Φc Φg Φt1 Φt2 Φp

T-stick 28.6% 37.5% 88.8% 59.5% 80.9%
L-stick 27.3% 47.5% 90.4% 56.7% 82.8%
L-hook 21.4% 36.7% 80.0% 53.6% 76.0%
Stick 42.1% 54.7% 85.0% 69.3% 79.1%

T-hook 27.8% 32.9% 52.5% 44.6% 72.4%
Paddle 22.2% 31.8% 68.5% 40.6% 63.6%

predictive power of each of the five perceptual functions (Φc,
Φg , Φt1 , Φt2 , and Φp) was evaluated using the two learning
approaches (i.e., k-NN and decision tree) as described in the
next section.

VI. EXPERIMENTAL RESULTS

A. Exploring a Single Tool
The data for the first set of experiments consists of 600

exploratory trials with each of the six tools for a total of 3000.
In about half of the trials the action has no effect on the puck,
and therefore the robot was first evaluated on whether it can
predict if its behavior would impact the puck at all. For all
six tools, the accuracy rates of these predictive models were
in the range of 90-95%, indicating that this task is relatively
easy. The robot was then evaluated on whether it can predict
the displacement direction of the puck in the cases where the
puck moves as a result of the action. Tables I and II show
the performance of the models learned for ∆θ using decision
tree with linear regression nodes at the leaves and k-NN.

The k-NN model performs best when using a tool-centric
frame of reference (Φt1 ) while the decision tree model
achieves best performance with the puck-centric frame of
reference (Φp). One possible explanation for this is that the
decision tree model can handle irrelevant attributes quite well
- a closer look at the produced trees reveals that the prediction
rules take into account only the pixels that are close to the
puck. Because the output of Φp is centered at the puck, the
task of the decision tree model is made even easier, since the



50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

Number of Training Trials

Pe
rc

en
ta

ge
 o

f G
oo

d 
Pr

ed
ict

io
ns

Decision Tree, tool centric
Decision Tree, puck centric
k−NN, tool centric
k−NN, puck centric

Fig. 5. Comparison between the decision tree and k-NN models for
the T-hook tool, with tool centric (Φt1 ) and puck-centric (Φp) frames of
reference as robot gains more experience. The performance rates indicate
the percentage of predictions whose absolute error is less than 20◦.

puck’s pixels are guaranteed to be in the center. The standard
k-NN model used here, however, is not capable of explicitly
detecting irrelevant attributes. The outputs from Φt1 contain
less variance since the pixels corresponding to the tool do
not change and therefore the only factor that plays a role in
deciding the neighbors of a new data point is the position of
the puck relative to the tool.

To determine how much experience is needed by the robot
in order to learn an accurate model, another experiment was
performed in which the number of training trials was varied
from 10 to 400, while the number of test trials was kept
constant at 200. Figure 5 shows the results for the T-hook
tool. The plot shows that after less than 50 training trials the
best performance is achieved when using the decision tree
model with a puck-centered frame of reference.

It is worth examining the situations in which the models
make prediction errors. Figure 6 visualizes the errors made
by the decision tree model using a camera-centric (Φc) and a
puck-centric (Φp) frame of reference for the T-hook tool. The
errors of the model using Φc are distributed fairly uniformly
around the tool. However, when using the puck-centric frame
of reference, the likelihood of prediction error is higher if the
puck is located near one of the tool’s corners and lower if
the puck is near a smooth side of the tool at the start of each
trial. The results for the other five tools also show a similar
pattern.

B. Generalization Across Tools
Another question of interest is whether the robot can learn

from one tool and apply that knowledge to predict the affor-
dances of another tool. An experiment was conducted during
which the robot was given a single tool to explore but then
evaluated on a different one. Table III shows the performance

a) Camera-centric b) Puck-centric

Fig. 6. Visualization of the prediction errors made by the decision tree
model with camera-centric (left) and puck-centric (right) frame of reference
for the T-hook tool. Each point in the plot (red or blue) represents the puck’s
starting position relative to the tool during some particular trial. The points
represented by the large red squares indicate cases in which the prediction
error is greater than 20◦.

TABLE III
MODEL PERFORMANCE FOR ∆θ (DECISION TREE ALGORITHM)

Train Tool Test Tool Frame of Reference
Φc Φg Φt1 Φt2 Φp

T-stick T-hook 42.6% 37.1% 49.5% 42.9% 86.6%
T-stick Paddle 34.6% 35.8% 24.7% 28.2% 76.7%
T-hook L-stick 45.2% 37.9% 48.8% 41.5% 85.4%
L-hook T-hook 50.5% 43.7% 59.6% 47.2% 80.0%

of the decision tree models for several such combinations.
The results obtained when using the k-NN algorithm for
this experiment (not shown due to space limitations) were
substantially worse across all five frames of reference and
indicate that the memory-based learning model has a hard
time generalizing across new tools. When using a decision
tree model, the robot is able to best predict the affordances of
the new tool when using a frame of reference centered at the
puck. This comes as no surprise, since the local neighborhood
of the puck does not vary as much across multiple tools.

The results also show that it is easier to generalize across
tools which have similar local features. For example, the
model learned from experience with the T-stick is also useful
in predicting the affordances of the T-hook. However, models
learned from experience with any of the first five tools do not
perform as well when using the Paddle, a tool which is unique
in its circular shape. This is consistent with observations of
monkey tool use conducted by Ishibashi et al. [10], which
show that the macaques preferred to use tools similar to the
T-hook to which they were exposed and were not capable of
retrieving food with novel circular-shaped tools.

C. Short and Long Tool
In this experiment, the robot is given a tool to explore and

then tested with a larger version of the same tool. Ishibashi
et al. [10] showed that monkeys are generally able to use
larger or smaller versions of tools to which they have been
exposed previously. The tool chosen for this experiment was
the L-hook, and after the robot has explored it, the tool’s



a) Regular tool b) Larger tool

Fig. 7. Visualization of the prediction errors made by decision tree model
using a puck-centered frame of reference for the regular (left) and the
enlarged (right) L-hook tools. In both scenarios, the model is trained on the
regular-sized tool. Each point in the plot (red or blue) represents the puck’s
starting position relative to the tool during some particular trial. The points
represented by the large red squares indicate cases in which the prediction
error is greater than 20◦.

dimensions were increased in size by 33%. The performance
rates (measured as percentage of good predictions) of the
decision tree models for the five different frames of reference
were 35.5% (Φc), 35.2% (Φg), 56.4% (Φt1), 30.9% (Φt2 ) and
83.8% (Φp). Thus, the predictive performance when using a
puck-centered frame of reference (Φp) is still good. Figure 7
visualizes the locations of the prediction errors and shows
that the model trained on the small L-hook performs similarly
well when evaluated on the larger version of the tool. In both
cases the errors are clustered around the corners of the tool.

The k-NN learning algorithm was also evaluated on this
task, but the results were significantly worse across all five
perceptual functions. The best rate of 56.1% was achieved
when using Φp. This comparisson shows that the compact
decision tree model is much better at generalizing in this
situation than the memory-based k-NN algorithm.

VII. CONCLUSION AND FUTURE WORK

This paper presented a framework for learning behavior-
grounded tool affordances with generalization across multiple
tools. Three sets of experiments were conducted in which the
robot was tested on predicting the affordances of familiar
tools, novel tools, and larger versions of familiar tools. Two
learning algorithms (k-NN and decision tree) were evaluated
on these tasks and the results show that the compact decision
tree model significantly outperforms the k-NN algorithm. The
frame of reference centered on the attractor object contains
the most predictive information for the given tool task.
Generalization across tools is best achieved when the novel
tool shares local features with one of the tools to which the
robot has been previously exposed.

The framework also allows for the prediction errors to be
quantified. As was shown previously, the chance of making a
prediction error depends on the position of the puck relative
to the tool. If the puck is located near the corner of a tool,
the chances of making a prediction error are much higher.

There are several natural extensions to this model to be
addressed in future work. First, the proposed model could be
integrated in a planing system that solves tool-using tasks.
The decision tree and k-NN learning models have natural
inverse models which could be used by the robot when
planing an action with the tool in order to achieve a certain
goal. Furthermore, by quantifying the errors of the models,
the robot would be able to select ways to use the tool which
minimize the uncertainty in predictions in the course of
planning and action execution.

Another problem to be resolved is that of model selection.
The results from this paper show that it is not necessary to
start the exploration of a new tool from scratch. However, if
the robot has been exposed to multiple tools and has learned
a model for each one of them, it would need to autonomously
select which model to use when it encounters a novel tool.
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