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Abstract—The Montessori method is a popular approach to
education that emphasizes student-directed learning in a con-
trolled environment. Object matching is one common task that
children perform in Montessori classrooms. Matching tasks also
occur quite frequently on intelligence tests for humans, which
suggests that intelligence correlates with the skills required to
solve these tasks. This paper describes robotic experiments with
four Montessori matching tasks: sound cylinders, sound boxes,
weight cylinders, and pressure cylinders. The robot grounded
its representation for the twelve objects in each task in terms of
the auditory and proprioceptive outcomes that they produced in
response to a set of ten exploratory behaviors. The results show
that based on this representation, it is possible to identify task-
relevant sensorimotor contexts (i.e., exploratory behavior and
sensory modality combinations) that are useful for performing
matching on a given set of objects. Furthermore, the results
show that as the number of sensorimotor contexts used to
perform matching increases, the robot’s ability to match the
objects also increases.

I. INTRODUCTION

The Montessori method is a 100-year-old method of

schooling that was developed by Maria Montessori (1870-

1952), an influential Italian educator. It is characterized by

a special set of educational materials and student-directed

learning activities [1] [2] [3]. One of its core principles is

that of embodied cognition, tying movement of the body and

learning together. It focuses on stimulating the development

of different skill sets, including sensory development, lan-

guage development, and numeracy skills. Most Montessori

tasks require that the children actively touch, move, relate,

and compare objects [2].

One task typical for a Montessori classroom is object

matching. Children are given two sets of objects and asked

to find the matches from one set to another. Sample tasks in-

clude matching colored tiles, matching 3-dimensional shapes,

and matching pieces of textured cloth [4]. All these tasks

are designed to stimulate a child’s ability to perceive object

properties and to allow the child to learn about the nature of

objects and their similarities.

The skills required to perform matching are also useful for

other tasks such as object grouping, category recognition,

and object ordering. At a fundamental level, these skills

require the ability to find differences between similar objects

and similarities between different objects. Recent work in

robotics has found that robots are able to recognize objects

and their categories [5], [6], group objects in an unsupervised

Fig. 1. The robot and the four Montessori matching tasks that were used
in the experiments. In clockwise order, the four tasks were: sound cylinders,
weight cylinders, pressure cylinders, and sound boxes.

manner [7], and find the odd one out in a set of objects [8].

These studies all strongly suggest that a robot should be able

to solve object pairing tasks.

This paper describes a method that allows a robot to

identify and match object pairs within a set of objects

based on their sensorimotor properties. To do this, the robot

first interacted with the objects using a set of exploratory

behaviors (grasp, lift, hold, shake, rattle, drop, tap, poke,

push, and press) in order to ground the properties of the

objects in the robot’s behavioral repertoire. After interacting

with the objects, the robot performed feature extraction on

the raw sensory data to create sensory feedback sequences

for each interaction. For each object, the robot recorded both

proprioceptive feedback in the form of joint torques and

auditory feedback in the form of an audio spectrogram. Next,

the robot generated similarity scores for all possible object

pairs and used these scores to match the objects. To com-

bine information from different sensorimotor contexts (e.g.,



audio-drop and proprioception-shake), the robot used three

different methods: uniform-weight combination, recognition

accuracy based weight combination, and pairing accuracy

based combination. These methods were evaluated for their

ability to match standard Montessori objects.

This study used four typical Montessori matching tasks.

In each task there were two groups of six objects and the

goal was to find the matching pairs of objects between the

two groups. The results indicate that the estimated object

similarities were sufficient to adequately pair objects. The

robot was able to solve the object matching task with a

high degree of accuracy. Furthermore, the robot was able to

identify the functionally meaningful sensorimotor contexts in

which it can distinguish between objects. To the best of our

knowledge, this is the first study that has applied Montessori

learning techniques in a robotic setting.

II. RELATED WORK

A. Psychology

Recent studies have found that students educated using

the Montessori method often outperform students educated

by traditional methods. For example, one study found that

middle school students from Montessori schools had higher

intrinsic motivation when it came to academic activities as

compared to students from traditional schools [9]. This sug-

gests that the Montessori method is more effective at foster-

ing learning in young children than the traditional methods.

This conclusion was supported by another study [3], which

found that, by the end of kindergarten, Montessori students

outperformed traditional students on standardized tests of

reading and math and also showed more advanced social

skills and executive control.

One task commonly used in the Montessori style of

teaching for younger children is the matching task [4]. In

this task, a child is given a set of objects (sometimes split

into two subsets and sometimes not) and asked to pair the

objects. A variant of that task was used by Daehler et

al. [10] who used both objects and pictures of objects in their

experiments. They found that children around the age of two

are able to correctly match objects from both pictures and

objects to sets of pictures or objects. One interesting result of

this experiment was that the children performed significantly

better on tasks where they were asked to match an object to

a set of objects, versus picture to object, object to picture,

or picture to picture matching. They suggested that this was

due to the ability of the children to perceive the objects from

multiple angles, thus giving them more reliable information

about the objects than they could extract from the pictures.

Other studies have shown infants’ ability to identify object

pairs and group objects into categories. A study by Leslie

et al. [11] demonstrated that eleven-month-old infants can

individuate pairs of objects only when there is a large amount

of physical similarity between objects in the same pair (in

this study they used identical objects) and a large physical

difference between objects of different pairs. Younger [12]

showed that ten-month-old infants can form object categories

and determine the variants and invariants of the objects

within a category and based on that information they can

determine the inclusion of a novel object in the given

category. These studies show that even at an early age,

humans are able to identify object properties and use them to

compare objects, which suggests that this is a fundamental

part of intelligence.

Another experiment by McPherson and Holcomb [13]

examined event-related brain potentials. Participants were

shown a picture of an object, then a picture of an object

from one of three categories: related, moderately related, or

unrelated. The electroencephalogram (EEG) results showed

that across all participants, there was a large negative spike

in the N400 family of potentials in the participants’ brain

shortly after being shown the second picture. The study found

that the magnitude of the spike was related to the similarity

between the two objects in the pictures. This suggests that,

at least at some level, the brain makes a quantitative measure

of how similar the two objects are.

B. Robotics

Several studies have demonstrated that robots can measure

perceptual as well as functional object similarities for a

variety of tasks [14], [15], [16], [17], [18], [8]. The ability

to measure the similarity between two objects is extremely

useful for tasks such as category recognition and object

grouping. Several studies [16], [5] have used unsupervised

approaches for object categorization, in which objects were

categorized by the similarity of their perceptual features.

Their results showed that when the robot was allowed to

use all of its sensory modalities, its object categorizations

closely resembled the human-provided ones. This suggests

that allowing robots to perceive more features about objects

can improve their ability to detect similarities between the

objects.

Sinapov and Stoytchev [8] showed how a robot can solve

the odd-one-out task. The robot picked the object in the

group that was least similar to the rest and resulted in the

rest of the objects being maximally similar. In this paper we

use a similar method to generate similarity scores between

objects. We then use this similarity measure to perform object

matching rather than solving the odd-one-out task, though

they are fundamentally related problems.

III. EXPERIMENTAL PLATFORM

A. Robot and Sensors

The experiments in this study were performed with the

upper-torso humanoid robot shown in Fig. 1. The robot has

as its actuators two 7-DOF Barrett Whole Arm Manipulators

(WAMs), each with an attached Barrett Hand. Each WAM

has built-in sensors that measure joint angles and torques at

500 Hz. An Audio-Technica U853AW cardioid microphone

mounted in the robot’s head was used to capture auditory

feedback at the standard 16-bit/44.1 kHz over a single

channel.



Fig. 2. The four sets of Montessori objects used in the experiments. From
left to right and top to bottom the object sets are: pressure cylinders, sound

boxes, sound cylinders, and weight cylinders. All the objects are marked
with colored dots on the bottom to indicate the correct matches; other than
that, the objects in each set are all visually identical (except for the pressure

cylinders and the sound cylinders, which also have different colors for the
tops to indicate the two sets of six objects).

B. Objects

The robot explored four standard Montessori sets of ob-

jects: pressure cylinders, sound boxes, sound cylinders, and

weight cylinders (Fig. 2). Each set is composed of six pairs of

objects. The objects in each pair are functionally identical to

each other. The objects in each set are designed to vary in one

specific dimension and be identical in all other dimensions.

The pressure cylinders vary in the amount of force required

to depress the rod, with pairs requiring the same amount of

force. The sound boxes vary in the sounds they make when

the contents move around inside the box, with pairs making

the same sounds. The sound cylinders vary in the same way

as the sound boxes, but are cylindrical in shape and have

different contents than the boxes. The weight cylinders vary

by weight, going from light to heavy, with pairs having the

same weight.

C. Exploratory Behaviors

The robot used ten behaviors to explore the objects: grasp,

lift, hold, shake, rattle, drop, tap, poke, push, and press. All

of these exploratory behaviors, except rattle, have been used

in our previous work [19], i.e., they were not specifically

designed for the Montessori objects used in this paper. The

behaviors were performed with the robot’s left arm and

encoded with the Barrett WAM API as trajectories in joint-

space. The default PID controller of the WAM was used

to execute the trajectories. Figure 3 shows images of the

robot performing each behavior on one of the sound boxes.

All the behaviors were performed identically on each object,

with only minor variations due to the initial placement of the

objects by the experimenter.

D. Data Collection

The robot interacted with the objects by performing a

series of exploration trials. During each trial, an object was

placed at a marked location on the table by the experimenter

and the robot performed all ten of its exploratory behaviors

on the object. The experimenter then picked another object

and the robot repeated this process. This was done until each

object had been explored ten times. During each interaction,

the robot recorded proprioceptive information in the form of

joint torques applied to the arm and auditory data captured

by the microphone. The robot also recorded visual data, but

it was not used in this experiment. In the end, the robot

performed all ten behaviors ten times on each of the twelve

objects in the four sets, resulting in 10×10×12×4 = 4800
behavior executions. This resulted in 18 GB of data, which

was stored for off-line analysis. It took approximately 20

hours to collect this dataset.

IV. FEATURE EXTRACTION

We used the method and the publicly available source

code for proprioceptive and auditory feature extraction that is

described in [5]. It is briefly summarized below. Propriocep-

tive data was recorded as joint torques over time resulting

in a 7 × m matrix, in which each column represents one

set of torque readings for all joints and m is the number

of readings. To reduce noise, a moving-average filter was

applied over each row in the matrix, which corresponds to

the torques from one joint. Audio data was recorded as wave

files, one for each interaction. A log-normalized Discrete

Fourier Transform was performed on each audio file using

25+1 = 33 frequency bins resulting in a 33×n matrix, where

each column represents the activation values for different

frequencies at a given point in time and n is the number of

samples in the interaction. The Growing Hierarchical Self-

Organizing Map (SOM) toolbox [20] was used to map each

column to a single state. Two 6 × 6 SOMs were trained

(one for audio and one for proprioception) using 5% of the

columns that were randomly selected from all the joint torque

and auditory data recorded by the robot. Each joint torque

and auditory record was then mapped to a discrete sequence

of states, where each column in the record was represented

by the most highly activated SOM state for that column. For

more details see [5].

V. EXPERIMENTAL METHODOLOGY

A. Estimating Similarity

Given a set of objects O the robot must be able to estimate

the pairwise similarity for any two objects i, j ∈ O in a given

sensorimotor context (i.e., exploratory behavior and sensory

modality combination). Let X i
c = [X1, ..., XD] be the set of

sensory feedback sequences detected while interacting with

object i ∈ O in sensorimotor context c ∈ C (where C is the

set of all contexts) and let sim(Xa, Xb) be the similarity

between two sequences Xa and Xb. The similarity between

objects i and j can be approximated with the expected

pairwise similarity of the sequences in X i
c and X j

c :

scij = E[sim(Xa, Xb)|Xa ∈ X i
c , Xb ∈ X j

c ]

In this paper we used the Needleman-Wunsch global align-

ment algorithm [21] to calculate sim(Xa, Xb). The algo-

rithm calculates the cost of aligning two discrete sequences



Fig. 3. The ten exploratory behaviors that the robot performed on all objects. From left to right and top to bottom: grasp, lift, hold, shake, rattle, drop,
tap, poke, push, and crush. The object in this figure is one of the sound boxes. The red marker on the table indicates the initial position of the objects at
the beginning of each trial. The object was placed back in that position by the experimenter after some of the behaviors (e.g., drop).

(strings), which in our case correspond to sequences of most

highly-activated SOM states (see the previous section). The

expected similarity scij is estimated as

1

|X i
c | × |X j

c |

∑

Xa∈X i
c

∑

Xb∈X
j
c

sim(Xa, Xb)

Next, the robot estimates the |O| × |O| pairwise object

similarity matrix W
c for a specific sensorimotor context c ∈

C. Each entry W c
ij in W

c is defined as the similarity scij
between two objects i and j in the specific context c. Figure 4

shows the similarity matrices for the sound cylinders for each

of the 20 contexts.

B. Combining Sensorimotor Contexts

It has been shown that combining information from dif-

ferent sensorimotor contexts has a boosting effect for tasks

such as object recognition [22]. Since object matching is

a similar task, it is likely that combining contexts will be

useful in this case as well. Thus, in this paper, we propose

three methods to combine sensorimotor contexts: uniform

combination, recognition accuracy based combination, and

pairing accuracy based combination. The result of combining

different contexts is a consensus matrix W that represents

the similarity between object pairs for the specific set of

contexts that was used to create it.

1) Uniform Combination: Given some set of contexts C′,

where C′ ⊆ C, the similarity matrices W
c for each of these

contexts can be used to construct the consensus matrix W

by simply averaging their individual values, i.e.,

Wij =
1

|C′|

∑

c∈C′

W c
ij

for all pairs of objects i and j.

2) Recognition Accuracy Based Combination: This

method assumes that contexts that are useful for object

recognition will also be useful for object pairing. The object

recognition accuracy rc for context c is estimated by per-

forming 10-fold cross validation on all the data from context

c using a classifier that attempts to recognize object identities

from sensory feedback sequences. To create the consensus

matrix for a given set of contexts C′ (C′ ⊆ C), a weighted

combination was used:

Wij =
∑

c∈C′

αc ×W c
ij

where αc is the normalized recognition accuracy rc for

context c such that
∑

c∈C′ αc = 1.0. The classifier used in

this paper was the k-nearest neighbor classifier with k set

to 3 and using the global alignment similarity function as a

similarity metric.

3) Pairing Accuracy Based Combination: The third com-

bination method allowed the robot to get feedback on its

attempts to pair some of the objects to refine its ability to pair

the remaining objects. In order to determine the usefulness

of each context, the robot split the set of objects such that

either 2, 3, or 4 of the six pairs were in the training set and

the rest remained in the testing set. Then, for each context c,

using the objects in the training set, the robot would attempt

to pair them (using the pairing method described below) and

evaluate the pairing accuracy pc for that context. To construct

the consensus matrix W, a weighted combination was used

similar to the previous method:

Wij =
∑

c∈C′

αc ×W c
ij

where αc is the normalized pairing accuracy pc for context

c such that
∑

c∈C′ αc = 1.0. After generating the consensus

matrix W, the robot would then attempt to pair only the
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Fig. 4. The similarity matrices used to perform matching given two sets of six objects each for the sound cylinders. The matrices for each individual
context are shown as well as the consensus matrix for all 20 contexts. The pairing accuracy combination method using four pairs for training was used
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Fig. 5. The consensus weight matrix for the sound cylinders using all 20
sensorimotor contexts for matching two groups of six objects. The pairing
accuracy combination method using four pairs to train was used to combine
the individual similarity matrices for each context. The subscripts indicate
correct matches.

objects from the testing set. Figures 4 and 5 show a consensus

matrix generated by combining the similarity matrices from

all 20 contexts when training using 4 pairs of objects.

C. Generating Matchings

The robot was tasked with generating matchings among

the objects in the four Montessori toys. The objects were

split into two groups of six and the robot was tasked with

selecting one object from each group to generate a match.

This split into two groups of six is naturally suggested by

the Montessori toys. For example, the sound cylinders have

either red or blue caps; the pressure cylinders have either

black or white buttons (see Fig. 2).

More formally, given a 6x6 non-symmetric similarity ma-

trix W
c or a consensus matrix W and objects O partitioned

into two sets of equal size Oa and Ob, matches were

generated by picking pairs that maximized similarity between

the objects in the pair and minimized similarity between

those objects and the remaining objects. One such matrix

is shown in Fig. 4. Formally, the objects i ∈ Oa and j ∈ Ob

that maximize

q(i, j,W) = Wij − γ





∑

k∈Ob/j

Wik +
∑

k∈Oa/i

Wkj





were selected and then removed from Oa and Ob. The first

term captures the pairwise similarity between objects i and j;

the last term captures the pairwise similarity between objects

i and j and the rest of the objects. The constant γ is a

normalizing weight, which ensures that this function is not

biased toward any of the terms. In our case, it was set to

γ =
1

2(|O| − 1)
.

This process was repeated until no more objects remained to

be paired.

D. Evaluation

Given a set of objects (e.g., the weight cylinders), the

robot’s model was queried in order to group the objects

into pairs. Five interactions were randomly picked for each

object from the set of ten interactions that were performed

on each object and used to create the weight matrix W
c for

each sensorimotor context c ∈ C. Consensus matrices W

were generated using the three methods described above for

a given set of contexts. Matchings were then generated using

the method described above. This process was repeated 100

times for every group of contexts. For each size from 1 to

|C|, 100 sets of contexts were randomly generated and tested

(1, 721 in total)1. Results are reported as the average accuracy

or as Cohen’s kappa statistic [23] over all 100 iterations.

Accuracy is computed as

%Accuracy =
#correct matchings

#total matchings
× 100.

The kappa statistic is computed as

kappa =
P (a)− P (e)

1− P (e)
.

In our experiments, P (a) is the pairing accuracy of the

robot and P (e) is the accuracy a random matching would be

1For sets of size 1, |C|− 1, and |C| all sets of that size were tested since
there were fewer than 100 sets of those sizes.
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Fig. 6. The accuracy of each context when matching between two sets of
six objects. Lighter values indicate higher accuracy with completely white
being 100%. Darker values indicate lower accuracy with completely black
being 0%. The images from left to right are: pressure cylinders, sound boxes,
sound cylinders, and weight cylinders.

expected to get. Kappa is used to allow for direct compar-

isons between the different sensorimotor context combination

methods, since for the pairing accuracy based method, chance

accuracy is different than it is for the other methods. The

kappa statistic controls for chance accuracy.

The evaluation was performed off-line after the robot

interacted with all 48 objects (4 Montessori tasks × 12

objects in each).

VI. RESULTS

A. Object Matching with a Single Context

Figure 6 shows the matching accuracy for each context for

all four Montessori tasks. For the pressure cylinders, the best

sensorimotor context was proprioception-press (97.5% pair-

ing accuracy), which was expected. Surprisingly, audio-press

also did well (80.7%), which was not expected since (at least

to the authors’ ears) all the cylinders sound the same when

pressed. Also interesting is the audio-drop context for the

sound cylinders (89.3% accuracy), which outperformed both

shake (60.3%) and rattle (51.3%) behaviors for audio. Audio-

press (82.3%) for the sound cylinders also did well, which

is likely due to the fact that they would fall over while being

pressed. It is also worth noting that for the weight cylin-

ders, the best contexts were proprioception-shake (87.7%)

and proprioception-push (94.3%) rather than contexts that

more directly measure the weight such as proprioception-lift

(50.7%) and proprioception-hold (18.8%).

In summary, the robot was able to identify the relevant

behaviors and sensory modalities and use them to pair the

objects in each of the four Montessori tasks with a high

degree of accuracy.
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Fig. 7. The kappa statistic for each set of objects. Each line represents
a different method for combing the sensorimotor contexts. The line la-
bels are as follows: U-uniform combination; R-recognition accuracy based
combination; P2-pairing accuracy using two pairs for training; P3-pairing
accuracy using three pairs for training; P4-pairing accuracy using four pairs
for training.

B. Object Matching with Multiple Contexts

Figure 7 shows the kappa statistic for each set of objects

as the number of contexts is varied from 1 to 20. The

graphs show that as the number of sensorimotor contexts

used to perform matching increases, so does the kappa

statistic. In all cases, the pairing accuracy based combination

using four pairs for training (the cyan line) outperforms all

the other combination methods. The only exception to this

is for the sound boxes, since accuracy reaches 100%, all

methods reach a kappa value of 1.0. In most cases, the

pairing accuracy based combination using three pairs for

training (the yellow line) also outperforms the other methods

(except for the method that uses four pairs for training).

The pairing accuracy based combination using two pairs for

training performs about the same as the recognition accuracy

combination method, which usually performs slightly better

than the uniform combination method. All the combination

methods perform better than chance for all object sets, which

is indicated by a 0.0 kappa value.

C. Repeating the Same Behavior

In all results reported up to this point, five interactions

were randomly chosen from the ten for each object during

each iteration. Figure 8 shows the average kappa statistic

as the number of trials vary, averaged over all the sets

of objects and number of contexts. The accuracies quickly

converge after only a few trials, implying that repeating

the same behavioral repertoire multiple times on an object

has quickly diminishing returns. In most cases and for all

combination methods, after four repetitions there is very little

gain. Diminishing returns is most quickly realized for the

pairing accuracy combination method using four pairs for



training. The largest gain when increasing interactions was

realized by the uniform combination method. This suggest

that the uniform combination method benefited the most from

a decrease in noise due to its lack of weighted preferences

between the contexts, whereas the pairing accuracy combi-

nation methods didn’t benefit as much because the weights

assigned to each context already decreased the noise.
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Fig. 8. The kappa statistic averaged across all four sets of objects while
varying the number of interactions used to generate the similarity matrices
W

c for each context c ∈ C. The number of randomly sampled interactions
was varied from 1 to 9. The line labels are the same as in Fig. 7.

VII. CONCLUSION AND FUTURE WORK

This paper demonstrated a framework that allows a robot

to solve object matching tasks by estimating the pairwise

similarity of objects in specific sensorimotor contexts. The

performance of this framework was evaluated with four

standard Montessori tasks that require pairing a set of objects

based on their perceived similarities across multiple sensory

modalities. The results showed that for a given set of objects,

certain contexts are best suited to extract the information

necessary to perform object pairing (e.g., audio-shake for

the sound boxes), while others are not useful for that set of

objects (e.g., proprioception-lift for the sound cylinders).

The robot was also able to combine similarity measures

from different contexts using three different methods: uni-

form combination, recognition accuracy based combination,

and pairing accuracy based combination. The robot was able

to achieve the best performance in almost every case when

it was allowed to train on four of the six object pairs before

being tested on the remaining two. These results show that

embodied sensorimotor similarity measures between objects

can be extremely useful for performing matching tasks.

This paper introduced the domain of Montessori tasks to

the field of robotics and showed how embodied learning

could be used to solve object pairing tasks. For each set

of objects the robot learned which set of contexts are most

useful for pairing the objects and which are not. The objects

in each Montessori task implicitly capture an important

concept that the robot can discover on its own through

sensorimotor exploration. In the future similar tasks could

be used to teach robots not only matching skills, but also

important concepts such as ordering, sorting, and relating.

Future work can also expand upon this research by improv-

ing the feature extraction methods, the similarity measure,

the combination methods, or by using a better matching al-

gorithm. It would also be useful to develop methods that can

discover novel exploratory behaviors. This framework can

also be applied to other tasks such as object categorization

and object recognition. For example, a robot could match

previous experiences with objects with new experiences in

order to label the objects.
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