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1. Introduction

The ability to use tools is one of the hallmarks of in-
telligence. Tool use is fundamental to human life and
has been for at least the last two million years. We
use tools to extend our reach, to amplify our physical
strength, to transfer objects and liquids, and to per-
form many other tasks. A large number of animals
have also been observed to use tools (Beck, 1980).
Some birds, for example, use twigs or cactus pines to
probe for larvae in crevices which they cannot reach
with their beaks. Sea otters use stones to open hard-
shelled mussels. Chimpanzees use stones to crack
nuts open and sticks to reach food, dig holes, or at-
tack predators. Orangutans fish for termites with
twigs and grass blades. Horses and elephants use
sticks to scratch their bodies. These examples sug-
gest that the ability to use tools is an adaptation
mechanism used by many organisms to overcome the
limitations imposed on them by their anatomy.

Despite the widespread use of tools in the animal
world, however, studies of autonomous robotic tool
use are still rare. There are industrial robots that use
tools for tasks such as welding, cutting, and paint-
ing, but these operations are carefully scripted by
a human programmer. Robot hardware capabilities,
however, continue to increase at a remarkable rate.
Humanoid robots such as Honda’s Asimo, Sony’s
Qrio, and NASA’s Robonaut feature motor capabil-
ities similar to those of humans. In the near future
similar robots will be working side by side with hu-
mans in homes, offices, hospitals, and in outer space.
It is difficult to imagine that these robots that will
look like us, act like us, and live in the same phys-
ical environment like us, will be very useful if they
are not capable of something so innate to human
culture as the ability to use tools. Because of their
humanoid “anatomy” these robots undoubtedly will
have to use external objects in a variety of tasks, for
instance, to improve their reach or to increase their
physical strength. These problems, however, have
not been well addressed by the robotics community.

Another motivation for studying robot tool behav-
iors is the hope that robotics can play a major role in
answering some of the fundamental questions about
tool-using abilities of animals and humans. After
ninety years of tool-using experiments with animals

there is still no comprehensive theory that attempts
to explain the origins, development, and learning of
tool behaviors in living organisms.

Progress along these two lines of research, however,
is unlikely without initial experimental work which
can be used as the foundation for a computational
theory of tool use. This poster provides an overview
of our dynamics simulator as well as preliminary sim-
ulation results for extension-of-reach tool tasks.

2. Affordances & exploratory behaviors

A simple object like a stick can be used in numerous
tasks that are quite different from one another. For
example, a stick can be used to strike, poke, prop,
scratch, pry, dig, etc. It is still a mystery how an-
imals and humans learn the affordances of objects
and what are the cognitive structures that they use
to represent them.

James Gibson (1979) defines affordances as “per-
ceptual invariants” that are directly perceived by an
organism and enable it to perform tasks. Gibson is
not specific about the way in which affordances are
learned but he suggests that some affordances are
learned in infancy when the child experiments with
objects. For example, an object affords throwing if
it can be grasped and moved away from one’s body
with a swift action of the hand and then letting it go.
The perceptual invariant in this case is the shrinking
of the visual angle of the object as it is flying through
the air. This very interesting “zoom” effect will draw
the attention of the child (Gibson, 1979, p. 235).

The related work on animal object exploration in-
dicates that animals use stereotyped exploratory be-
haviors when faced with a new object (Power, 2000,
Lorenz, 1996). This set of behaviors is species spe-
cific and may be genetically predetermined. For
some species these tests include almost their entire
behavioral repertoire: “A young corvide bird, con-
fronted with an object it has never seen, runs through
practically all of its behavioral patterns, except so-
cial and sexual ones.” (Lorenz, 1996, p. 44).

Recent human studies also suggest that the inter-
nal representation for a new tool used by the brain
might be encoded in terms of specific past experi-
ences (Mah and Mussa-Ivaldi, 2003). Furthermore,
these past experiences consist of brief feedforward
movement segments used in the initial exploration



of the tool. A tool task is later learned by dynami-
cally combining these sequences.

Thus, the properties of a tool that an animal is
likely to learn are directly related to the behav-
ioral and perceptual repertoire of the animal. Fur-
thermore, learning these properties should be rela-
tively easy since the only requirement is to perform a
(small) set of exploratory behaviors and observe their
effects. The next section describes our current ap-
proach to learning tool affordances by a robot, which
was inspired by the above mentioned examples.

A shortcoming of this approach is that there are
tool properties that are unlikely to be discovered
since the required exploratory behavior is not avail-
able to the robot. This problem has also been ob-
served in animals, e.g., macaque monkeys have sig-
nificant difficulties learning to push an object with
a tool away from their bodies because this move-
ment is never performed in their normal daily rou-
tines (Ishibashi et al., 2000). This problem should
be resolved, however, if the ability to learn new ex-
ploratory behaviors is added.

3. Tool Representation

Let Bb,, Bbss - - -, Bp,, be the binding (or grasping) be-
haviors available to the robot. Let B.,, Bes, - - -, Ben
be the exploratory behaviors available to the robot.
The perceptual observations of the robot form a per-

ceptual vector: 01,09,...,0,. A specific instance of
this vector will be denoted with 63,05, ...,0},.

With this notation in mind, the functionality of a
tool when applied to a specific object can be repre-
sented with an Affordance Table as shown below.

Binding Exploratory Observation
Behavior Behavior(s) Vector
~T AT ~T
Bbs 6613/8623"' 01,05,...,0,
~2 A2 ~2
Bbs 6665/3635"' 01,05,...,0,
T AT 7
ﬂbk ﬂ€37ﬂ677“‘ 01,09,---,04

In each row of the table, the first entry repre-
sents the behavior used to attach the tool to the
robot. The second entry represents the sequence of
exploratory behaviors applied to/with the tool. The
last entry represents the observation vector.

To limit the number of observations we use the
conclusions reached in animal studies that pri-
mates detect only visual contact between the tool
and the incentive and movement of the incentive
(Povinelli et al., 2000). Thus, the current implemen-
tation of this model supports only six types of obser-
vations: x and y position of the incentive, Az and Ay
of the incentive, and ¢, and ¢, the contact point be-
tween the tool and the incentive relative to the visual
centroid of the tool. All variables are continuous.

The exploratory behaviors consist of different arm
movement patterns: e.g., move away, move toward,
sweep, shake, grasp, drop, etc. In addition to that
there are two binding behaviors - grasp and regrasp
for attaching the tool to the robot. The table is filled
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Figure 1: The seven tools used in the experiments. From
left to right: straight stick, left L-rake, right L-rake, T-
rake, left hook, right hook, and T-rake with hooks.

with values during learning trials in which the robot
randomly chooses and performs a binding behavior
followed by one or more exploratory behaviors.

Before test trials, the observations of the table
are indexed pairwise into three separate kd-trees
(Arya et al., 1998). These trees allow fast approxi-
mate nearest neighbor searches with a controllable
maximum error. To solve a tool task the robot
queries the table to select a behavior that is likely
to move the incentive in the desired direction.

4. Experimental Platform

Currently we are testing this representation on an
extension-of-reach task with 7 different tools (Fig-
ure 1). Extension of reach experiments have been
used for the last 90 years to test the intelligence
and tool-using abilities of primates (Kohler, 1931,
Povinelli et al., 2000). In these experiments the an-
imal is prevented from getting close to an incentive
and must use one of the available tools to bring the
incentive within its sphere of reach.

The test platform used in the experiments is a
dynamics simulator for robot-tool interaction devel-
oped in house. The dynamics are calculated using
the Open Dynamics Engine library (Smith, 2003).
The OpenGL rendered simulation window is treated
as a camera image. Color segmentation is used
to detect the location and movement of the incen-
tive, tools, and robot links. The robot is a sim-
ulated manipulator arm with two rotational joints
and a gripper. A prismatic joint at the base of
the robot allows it to raise and lower its hand.
MPEG movies from the simulator are available at:
http://www.cc.gatech.edu/ ~saho/tooluse/
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