Unsupervised Segmentation of Audio Speech Using the Voting Experts Algorithm

Matthew Miller

Peter Wong

Alexander Stoytchev

Developmental Robotics Lab
Towa State University
mamille @iastate.edu, pwwong @iastate.edu, alexs @iastate.edu

Abstract

Human beings have an apparently innate ability to seg-
ment continuous audio speech into words, and that abil-
ity is present in infants as young as 8 months old. This
propensity towards audio segmentation seems to lay the
groundwork for language learning. To artificially repro-
duce this ability would be both practically useful and
theoretically enlightening. In this paper we propose an
algorithm for the unsupervised segmentation of audio
speech, based on the Voting Experts (VE) algorithm,
which was originally designed to segment sequences of
discrete tokens into categorical episodes. We demon-
strate that our procedure is capable of inducing breaks
with an accuracy substantially greater than chance, and
suggest possible avenues of exploration to further in-
crease the segmentation quality.

Introduction

Human beings have an apparently innate ability to seg-
ment continuous spoken speech into words, and that abil-
ity is present in infants as young as 8 months old (Saffran,
Aslin, & Newport 1996). Presumably, the language learn-
ing process begins with learning which utterances are to-
kens of the language and which are not. Several experi-
ments have shown that this segmentation is performed in an
unsupervised manner, without requiring any external cues
about where the breaks should go (Saffran, Aslin, & New-
port 1996)(Saffran et al. 1999). Furthermore, Saffran and
others have suggested that humans use statistical properties
of the audio stream to induce segmentation. This paper pro-
poses a method for the unsupervised segmentation of spoken
speech, based on an algorithm designed to segment discrete
time series into meaningful episodes. The ability to learn
to segment audio speech is useful in and of itself, but also
opens up doorways for the exploration of more natural and
human-like language learning.

Paul Cohen has suggested an unsupervised algorithm
called Voting Experts (VE) that uses the information theo-
retical properties of internal and boundary entropy to seg-
ment discrete time series into categorical episodes (Cohen,
Adams, & Heeringa 2007). VE has previously demonstrated,
among other things, the ability to accurately segment plain
text that has had the spaces and punctuation removed. In this
paper we extend VE to work on audio data. The extension is
not a trivial or straightforward one, since VE was designed

to work on sequences of discrete tokens and audio speech is
continuous and real valued.

Additionally, it is difficult to evaluate an algorithm that
tries to find logical breaks in audio streams. In continu-
ous speech, the exact boundary between phonemes or be-
tween words is often indeterminate. Furthermore, there are
no available audio datasets with all logical breaks labeled,
and given an audio stream it is unclear where all the logical
breaks even are. What counts as a logical break? It is dif-
ficult to quantify the level of granularity with which human
beings break an audio stream, and more so to specify the
limits of any rational segmentation. This paper describes a
method to address these problems.

Our results show that we are able to segment audio
sequences with accuracy significantly better than chance.
However, given the limitations already described, we are
still not at a point to speak to the objective quality of the

segmentation.
Related Work

Our work is directly inspired by the psychological studies
of audio segmentation in human beings (Saffran, Aslin, &
Newport 1996)(Saffran et al. 1999)(Saffran et al. 1997).
These studies show us that the unsupervised segmentation
of natural language is possible, and does not require pro-
hibitively long exposure to the audio. However, these studies
do little to direct us towards a functioning algorithm capable
of such a feat.

Conversely, there are several related algorithms capa-
ble of segmenting categorical time series into episodes
(Magerman & Marcus 1990)(Kempe 1999)(Hafer & Weiss
1974)(de Marcken 1995)(Creutz 2003)(Brent 1999)(Ando
& Lee 2000). But these are typically supervised algorithms,
or not specifically suited for segmentation. In fact, many
of them have more to do with finding minimum descrip-
tion lengths of sequences than with finding logical segmen-
tations.

Gold and Scassellati have created an algorithm specifi-
cally to segment audio speech using the MDL model (Gold
& Scassellati 2006). They recorded 30 utterances by a
single speaker and used MDL techniques to compress the
representation of these utterances. They then labeled each
compressed utterance as positive or negative, depending on
whether the original utterance contained a target word, and
then trained several classifiers on the labeled data. They

used these classifiers to classify utterances based on whether
they contained the target word. This technique achieved
moderate success, but the dataset was small, and it does not
produce word boundaries, which is the goal of this work.

This work makes use of the Voting Experts (VE) algo-
rithm. VE was designed to do with discrete token sequences
exactly what we are trying to do with real audio. That is,
given a large time series, specify all of the logical breaks so
as to segment the series into categorical episodes. The ma-
jor contribution of this paper lies in transforming an audio
signal so that the VE model can be applied to it.

Overview of Voting Experts

The VE algorithm is based on the hypothesis that natural
breaks in a sequence are usually accompanied by two in-
formation theoretic signatures (Cohen, Adams, & Heeringa
2007)(Shannon 1951). These are low internal entropy of
chunks, and high boundary entropy between chunks. A
chunk can be thought of as a sequence of related tokens. For
instance, if we are segmenting text, then the letters can be
grouped into chunks that represent the words.

Internal entropy can be understood as the surprise associ-
ated with seeing the group of objects together. More specif-
ically, it is the negative log of the probability of those ob-
jects being found together. Given a short sequence of tokens
taken from a longer time series, the internal entropy of the
short sequence is the negative log of the probability of find-
ing that sequence in the longer time series. So the higher the
probability of a chunk, the lower its internal entropy.

Boundary entropy is the uncertainty at the boundary of
a chunk. Given a sequence of tokens, the boundary en-
tropy is the expected information gain of being told the next
token in the time series. This is calculated as H;(c) =
— > P(h,c)log(P(h,c)) where cis this given sequence
of tokens, P(h, ¢) is the conditional probability of symbol A
following ¢ and m is the number of tokens in the alphabet.
Well formed chunks are groups of tokens that are found to-
gether in many different circumstances, so they are some-
what unrelated to the surrounding elements. This means
that, given a subsequence, there is no particular token that
is very likely to follow that subsequence.

In order to segment a discrete time series, VE preproces-
sors the time series to build an n-gram trie, which represents
all its possible subsequences of length less than or equal to n.
It then passes a sliding window of length n over the series.
At each window location, two “experts” vote on how they
would break the contents of the window. One expert votes
to minimize the internal entropy of the induced chunks, and
the other votes to maximize the entropy at the break. The
experts use the trie to make these calculations. After all the
votes have been cast, the sequence is broken at the “peaks” -
locations that received more votes than their neighbors. This
algorithm can be run in linear time with respect to the length
of the sequence, and can be used to segment very long se-
quences. For further details, see the journal article (Cohen,
Adams, & Heeringa 2007).

It is important to emphasize the VE model over the actual
implementation of VE. The goal of our work is to segment
audio speech based on these information theoretic markers,

and to evaluate how well they work for this task. In order
to do this, we use a particular implementation of Voting Ex-
perts, and transform the audio data into a format it can use.
This is not necessarily the best way to apply this model to
audio segmentation. But it is one way to use this model to
segment audio speech.

The model of segmenting based on low internal en-
tropy and high boundary entropy is also closely related to
the work in psychology mentioned above (Saffran et al.
1999). Specifically, they suggest that humans segment au-
dio streams based on conditional probability. That is, given
two phonemes A and B, we conclude that AB is part of a
word if the conditional probability of B occurring after A is
high. Similarly, we conclude that AB is not part of a word if
the conditional probability of B given A is low. The informa-
tion theoretic markers of VE are simply a more sophisticated
characterization of exactly this idea. Internal entropy is di-
rectly related to the conditional probability inside of words.
And boundary entropy is directly related to the conditional
probability between words. So we would like to be able to
use VE to segment audio speech, both to test this hypothesis
and to possibly facilitate natural language learning.

Experimental Procedure

Our procedure can be broken down into three steps. 1) Tem-
porally discretize the audio sequence while retaining the rel-
evant information. 2) Tokenize the discrete sequence. 3)
Apply VE to the tokenized sequence to obtain the logical
breaks. These three steps are described in detail below, and
illustrated in Figure 2.

L i Ll . i il
100 200 300 400 500 600 700 800

Figure 1: A voiceprint of the first few seconds of one of our
audio datasets. The vertical axis represents 33 frequency
bins and the horizontal axis represents time. The intensity
of each frequency is represented by the color. Each vertical
line of pixels then represents a spectrogram calculated over
a short Hamming window at a specific point in time.

Step 1
In order to discritize the sequence, we used the discrete
Fourier transform in the Sphinx software package to ob-
tain the spectrogram information (Walker et al. 2004). We
also took advantage of the raised cosine windower and the
pre-emphasizer in Sphinx. The audio stream was windowed
into 26.6ms wide segments called Hamming windows, taken
every 10ms (i.e. the windows were overlapping). The
windower also applied a transformation on the window to
emphasize the central samples and de-emphasize those on
the edge. Then the pre-emphasizer normalized the volume
across the frequency spectrum. This compensates for the
natural attenuation (decrease in intensity) of sound as the
frequency is increased.

Finally we used the discrete Fourier Transform to obtain
the spectrogram. This is a very standard procedure to obtain

the spectrogram information of an audio speech signal, and
technical explanation of each of these steps is available in
the Sphinx documentation (Walker et al. 2004).

We performed the Fourier Transform at 64 points. How-
ever, since we are only concerned with the power of the au-
dio signal at each frequency level, and not the phase, then
the points are redundant. Only the first 33 contained unique
information. This transformation converted a 16kHz mono
audio file into a sequence of spectrograms, representing the
intensity information in 33 frequency bins, taken every 10ms
through the whole file. These spectrograms can be viewed
as a voiceprint representing the intensity information over
time. Figure 1 shows a voiceprint taken from the beginning
of one of the datasets used in our experiments.

Step 2

After discretization the next step is tokenization. Once we
obtained the spectrogram of each Hamming window over
the entire audio sequence, we converted it to a time series
composed of tokens drawn from a relatively small alphabet.
In order to do this we trained a Self Organizing Map (SOM)
on the spectrogram values (Kohonen 1988).

An SOM can be used as a clustering algorithm for in-
stances in a high dimensional feature space. During train-
ing, instances are presented to a 2D layer of nodes. Each
node has a location in the input space, and the node clos-
est to the given instance “wins.” The winning node and its
neighbors are moved slightly closer to the training instance
in the input space. This process is repeated for some num-
ber of inputs. Once training is complete the nodes in the
layer should be organized topologically to represent the in-
stances presented in training. Instances can then be classi-
fied or clustered based on the map. Given a new instance,
we can calculate the closest node in the map layer, and the
instance can be associated with that node. This way we can
group all of the instances in a dataset into clusters corre-
sponding to the nodes in the SOM.

However, this approach has its drawbacks. For instance,
it requires the specification of a set number of nodes in the
network layer before training begins. Layer size selection is
not an inconsequential decision. Selecting too many nodes
means that similar instances will be mapped to different
nodes, and selecting too few means dissimilar instances will
be mapped to the same one.

Instead of guessing and checking, we used a Growing
Grid self organizing network (Fritzke 1995). The Growing
Grid starts with a very small layer of SOM nodes arranged
in a rectangular pattern. It trains these nodes on the dataset
as usual, and maps the dataset to the nodes based on their
trained values. The node whose mapped instances have the
highest variance is labeled as the error node. Then a new
row or column is inserted into the map between the error
node and its most dissimilar neighbor. The new nodes are
initialized as the average of the two nodes they separate, and
the map is retrained on the entire dataset.

Audio File

A

Sphinx-4

Spectrogram Instances

R {
il [

308
T, #
i

T S

T R
LR

l
Java SOM Toolbox
GH-SOM

Self Organizing Map J«

L}

¥

|
*

< —

SOM States
1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,2
2,2 3,0 3,0 3,03,02,02,02,02,01,2
1,21,2 1,2 1,4 5,0 0,50,50,51,41,4
1,8 734 7.4 T4y2 7,2 7,2 7,2 7,2 7,2 732
54 7,2 7,2 7,2 7,2 7,3 7,3 7,3 7,3 7,8
i, 37,3 7,3 7,8 7,337,383 7,837,838 7,3 17,3
I, 7,3 7,837,2 7,3 7,3 7,3 7,8 7,3 7,3
7,3 7,37,3 4,17,3 4,1 4,1 4,1 4,1 4,1
4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1
4,1 4,1 4,1 4,1 4,1 6,5 6,5 6,5 6,5 6,5
Collapsed SOM States l
1,2 2,2 3,0 2,01,2 1,4 5,0 0,5 1,4
7,4 7,2 5,47,27,3 4,17,3 4,1 6,5
‘L Break Timestamps
. 1323.0 ms
Votlng 1533.0 ms
—»1573.0 ms
Experts 1673.0 ms

Figure 2: Illustration of the Audio Segmentation Procedure.

The stopping criterion is specified by an error parameter
7. If the variance of the error node is less than 7 times the
variance of the entire dataset, no new rows or columns are
added. This effectively ensures that no single node will ac-
count for more than 7 of the total error in the dataset. This
way the SOM ends up sized appropriately for the particular
problem, and the data is spread evenly through the nodes.
For our experiments we used a 7 = 0.01. We used the im-
plementation of a Growing Hierarchical SOM (GH-SOM)
in the Java SOM Toolbox to train our Growing Grid (Ditten-
bach, Merkl, & Rauber 2000).

After training a Growing Grid SOM on the spectrogram
data we used it to classify each instance the dataset. Each
node in the SOM was represented by a unique label - its co-
ordinates in the network layer. For instance the node with
layer coordinates (1, 2) was represented by the string “1,2”.
So the clustering produced a sequence of node labels corre-
sponding to each spectrogram instance (see Figure 3). In this
way we produced a discrete sequence of tokens representing
the audio data.

In the resulting sequence, it was common for several con-
secutive instances to be mapped to the same node in the
SOM. For instance, silence always maps to the same SOM
node, so any period of silence in the original audio was rep-
resented by several instances of the same node in the discrete
sequence. This also happened for similar sounds that were
held for any length of time. In order to be time independent,
we collapsed these repeated sequences into just one instance
of the given node. This effectively denotes a period of si-
lence by a single state, as well as the same sound held for
several time steps (see Figure 4). This way our segmenta-
tion algorithm only looked at changes between SOM states,
and not the duration that the sound stayed the same.

Step 3

In order to segment the tokenized sequence, we ran VE on
the sequence of SOM states. VE placed breaks at locations
of low internal entropy and high boundary entropy. Then,
after accounting for the collapsed (i.e. repeated) tokens, we
produced the time stamps of all of the induced break loca-
tions in the audio stream.

Experiments
We performed two experiments to test this algorithm.

Experiment 1 First we used text-to-speech software to
generate spoken audio. We modeled our dataset on the audio
used for the study of speech segmentation in 8-month-old in-
fants. In that study the infants were played artificially gen-
erated speech consisting of four made up words “’golabu,”
“tupiro,” ’bidaku” and “’padoti,” in random order. We com-
posed a randomly ordered list of 900 instances of the made
up words, and then generated audio speech using the built
in text-to-speech synthesizer on a Macintosh laptop. We
chose their most natural sounding voice, called ”Alex,” set
on medium speed. This resulted in approximately 10 min-
utes of speech.

We then ran the segmentation process described above on
the audio to obtain the induced breaks. That is, we used
Sphinx to obtain the spectrogram information for each Ham-
ming window, trained a Growing Grid SOM on the spectro-

gram data, and then used the SOM to convert the spectro-
gram data into a sequence of SOM node labels. Figure 3
shows the first 100 labels in a sample sequence. It is ev-
ident that most nodes are repeated several times in a row,
and replacing the repeated nodes with a single instance pro-
duces the sequence in Figure 4. The VE algorithm was then
run on this collapsed sequence, each coordinate pair being
used as a fundamental token by the Voting Experts algo-
rithm. VE induced breaks between the coordinate pairs, and
by re-expanding the sequence to its original length, we cal-
culated the timestamps of the induced breaks. This entire
procedure is visualized in Figure 2.

=
(¥
=
N
=
(¥
=
N
=
N
=
[N

N NI Y, Sy
R W ow oW e R
N R N RN e,
I—'ww'w“muhmc
N I I B e
R woww RO
S S N N RN e,
R ww NN e o
[B B s B B
I—IUJLAJ‘;.HT\JMDO
T N N I N
FHWwWwwM oo
N N N N R "
HFR wwwNwo N
N N N N =R
FR wwwMNw o N
[s B B B o I
HI—'-LAJUJLJMH:‘!DM
N N R N R X
W oww N NN

s
=
.
w
s
=
s
w
s
.
=)
wn
=)
wn
=)
wn
=)
wn
=)
w

Figure 3: The coordinates of the SOM nodes corresponding
to the first 100 spectrogram instances from a sample artifi-
cially generated baby talk audio dataset.

i,2 2,2 3,0 2,01,2 1,4 5,0 0,5 1,4
7,47,2 5,47,27,3 4,17,3 4,1 6,5

Figure 4: The coordinates of the SOM nodes corresponding
to the first 100 spectrogram instances from a sample artifi-
cially generated baby talk audio dataset with the repeated
states removed.

Experiment 2 We also performed this exact same proce-
dure on the audio from the first of 9 CDs taken from an audio
recording of George Orwell’s novel “1984.” The audio file
was roughly 40 minutes in length. The reason we chose this
particular audio book is that the text from 1984 was used
in the original segmentation experiments with VE (Cohen,
Adams, & Heeringa 2007). This experiment was performed
to evaluate the procedure’s effectiveness on language spoken
by a person, as compared to artificially generated language.

Evaluation Methodology

Evaluating the output of the algorithm proved to be very dif-
ficult. In fact, one of the major contributions of this paper
is the methodology described here for evaluating the algo-
rithm. In the first experiment, the audio was generated arti-
ficially. It would seem simple to determine the duration of
each phoneme and word, and compare those time stamps
with the induced breaks, however there are two separate
problems with this approach.

First of all, the speech generation software does not gen-
erate regularly spaced phonemes. It actually constitutes the
sequence using diphones, so that the sound and duration of
one phoneme is affected by those around it. Furthermore,
the sound generally fades between one phoneme and the
next, resulting in an ambiguous break location.

Secondly, there exists more than one logical break loca-
tion between certain phonemes. In particular, there are silent
spaces between some words and after certain phonemes. It
is acceptable to place a break anywhere in that silence, or
even one break at the beginning and one at the end. In other
words, there is much more lee-way in proper audio segmen-
tation than one might expect.

These problems are, of course, exacerbated in the case of
experiment 2, which uses continuous natural speech instead
of the regular artificially generated audio from experiment
1. When evaluating the audio from experiment 1, there are
only a limited number of phonemes in use, and a limited
number of ways they are combined. This is not the case in
experiment 2. Evaluating the breaks then involves solving
a different problem at each suggested break location. No
two proposed breaks look alike, and so each one is a unique
judgment call.

Given these constraints, we tested our segmentation by
using human volunteers to verify the breaks. For each in-
duced break, they checked the audio stream to see whether
it was placed correctly. In order for it to count as a correct
break, it had to be placed within 13ms of an obvious break
location. Such locations include the beginning and ending
of words, as well as phoneme boundaries where the audio
stream suddenly changes in intensity or frequency. Any
break placed in the silence between words or phonemes was
also counted as correct. These locations were verified visu-
ally using software we wrote to view the waveforms and the
breaks. The reason the breaks were given a 13ms window on
either side is that Sphinx uses a 26.6ms wide Hamming win-
dow to calculate the spectrogram information. The breaks
output by the algorithm correspond to the center of that win-
dow. We counted an induced break as “correct” if there was
a true break anywhere inside that window.

If ¢ is the number of true breaks induced by the algorithm,
and n is the total number of breaks it induces, then the accu-
racy is given by a = t/n. This tells us how likely it is that an
induced break is correct. However, this doesn’t tell us how
well the algorithm is really doing. After all, for a break to be
considered “correct” it simply has to fall within 13ms of any
artifact in the audio stream that a human would consider a
logical breaking point. As it turns out, this is actually pretty
likely. To account for this, we compared the performance of
our algorithm with the performance of randomly generated
breaks.

Over the 10 minutes of audio in experiment 1, our al-
gorithm induced roughly 4000 breaks. Experiment 2 had
roughly four times that many. It would have been impossi-
ble to manually check every single one of the 20,000 breaks
induced in the two experiments. Instead, we chose a subset
of the data, and checked over that. There are several rea-
sons to think that “spot checking” the algorithm is a good
measure of its overall accuracy. In experiment 1 the audio
stream consists of the same four words repeated over and
over in random order. So we would expect the segmenta-
tion algorithm to perform fairly uniformly everywhere. In
experiment 2 this was not the case, but we strove to sam-
ple enough points to ensure that the estimated accuracy was
reliable.

Figure 5: A short sample of the audio from one of our exper-
iments which shows the breaks generated by our algorithm.
The “correct” breaks are highlighted in green. The two blue
lines around each break show the bounds of the 13ms win-

dow.

Figure 6: The same audio segment as shown in Figure 5, but
with the randomly generated breaks shown instead.

In order to check subsets of the data, 5 sections of 1
minute each were randomly chosen from the audio stream
of each experiment. The breaks in these 1 minute segments
were recorded. At the same time, for each of these sections
we randomly generated the same number of break times-
tamps over the same 1 minute. We wrote a Java program
to load all the breaks at once, visualize the waveform, and
allow the volunteers to scroll through the breaks and make
their decisions quickly (see Figures 5 and 6).

The volunteers were not told which file contained random
breaks, and were instructed to use their best judgment to de-
termine the correctness of each break. They were specifi-
cally told to use consistent judging criteria between the two
files. This way we compared the performance of our algo-
rithm to an algorithm that randomly generates roughly the
same number of breaks. Figure 5 shows an sample section of
audio with the induced breaks drawn in. Figure 6 shows the
same section of audio with the randomly generated breaks.
These sections have already been graded, and the “correct”
breaks are marked in green.

Intercoder Reliability
Two volunteers were trained how to use the visualization
software, and how to visually identify breaks in the audio
stream. One grader was chosen to grade all 20 files, to main-
tain consistency over the entire dataset.

The second grader was used to test intercoder reliability
(Holsti 1969). That is, how consistently human beings will
make the same grading decisions regarding the correctness
of an induced audio break. The second grader was trained
separately from the first, and given 4 pairs of files to evalu-
ate - 2 pairs taken from each experiment. Thus, the second
grader evaluated roughly 40% of the same data as the first
grader. If ¢ is the total number of decisions to be made by
two graders and a is the number of times they agree, then
the intercoder reliability is given by ICR = a/t. The ICR
values for both experiments are summarized in Table 1. The

agreement between our graders is fairly high, considering
the subjective nature of most audio break judgements. Typ-
ically, an intercoder reliability of 0.8 is considered accept-
able.

Table 1: The Intercoder Reliability for experiments 1 and 2

Experiment || Total Breaks | Agreed Breaks | ICR
Exp 1 1542 1346 0.873
Exp 2 1564 1356 0.867

Results

The graded segmentation results are shown in Table 2. For
each experiment the breaks induced by our algorithm are
shown next to the breaks that were randomly assigned. As
you can see, the VE segmentation performed substantially
better than chance. In both experiments the accuracy was
above 80%, which is considerably good. However, the prob-
ability of a random break being placed at a correct location
is above 60% in both datasets. It is impossible to know
whether a significant portion of our algorithm’s breaks were
placed “randomly,” (i.e. for bad reasons) and then acciden-
tally marked as correct by the graders.

However, anecdotally, the breaks induced by VE were
much more logical than the random ones, even in cases when
its breaks were incorrect. They tended to be placed at the
beginning and ending of words, and at dramatic shifts in the
audio signal. Many times the “incorrect” breaks came at lo-
cations that could have been phoneme boundaries, but were
impossible to distinguish visually by the graders. An au-
dio evaluation of each break would have taken a substantial
amount of time compared to the quick visual grading, and
we could not perform that experiment at this time.

Also, the randomly generated breaks got a substantial
number “correct” that happened to fall in the silence be-
tween words. We instructed the volunteers to count any
breaks that fell in silence as correct, so these breaks helped
to increase the accuracy of the random segmentation. The
VE breaks, however, generally did not exhibit this behavior.
They were usually placed either neatly between the words,
or at the end of the silence before the next word began.
These qualitative observations are not reflected in the dif-
ference in accuracy between the VE segmentation and the
random one. Which leads us to believe that further evalua-
tion will show a much greater gap between the two methods.
Figures 5 and 6 illustrate a typical example of the difference
in segmentation.

Table 2: Accuracy Results for Experiments 1 and 2

Experiment Total | Correct | Accuracy
Breaks | Breaks
Exp 1 - Algorithm 1922 1584 0.824
Exp 1 - Random 1922 1312 0.683

Exp 2 - Algorithm 1910 1538 0.805
Exp 2 - Random 1910 1220 0.639

Conclusions and Future Work
We have described a technique for transforming spoken au-
dio into a discrete sequence of tokens suitable for segmen-
tation by the Voting Experts algorithm. And we have shown
that this technique is clearly capable of inducing logical

breaks in audio speech. This is a very significant result and
demonstrates that the unsupervised segmentation of audio
speech based on the information theoretic model of VE is
possible. We have tested the algorithm on simple “baby
talk” inspired by literature on statistical learning in infants
(Saffran, Aslin, & Newport 1996). We have also tested it on
large audio dataset of spoken English taken from an audio
book. This demonstrates its ability to work on real world
audio, as well as its tractability when dealing with large
datasets. The segmentation, however, is imperfect. There
are several possible avenues of future work that might im-
prove the segmentation accuracy of the algorithm.

For example, we decided to use the spectrogram informa-
tion calculated at discrete time slices as our base instances.
We could have used cepstral information, which has been
shown more effective in speech recognition tasks. But the
spectrogram is more straightforward and applies to audio
other than speech. It is possible in future work to use the
cepstral coefficients and their derivatives in place of the
spectrograrns.

It is also possible that the dimension of the Fourier trans-
form might be increased. The SOM might produce better
clustering with a higher or lower 7 parameter. Or, there
might be a better method altogether for finding boundaries
that produce low internal entropy of chunks and high bound-
ary entropy between them. There are many possibilities for
improvement and future investigation of this procedure. All
that can be said right now is that finding such breaks does
produce a somewhat logical segmentation of audio speech.
It will be interesting to discover whether truly reliable seg-
mentation can be performed this way, and whether these seg-
ments can be used as a basis for human-like language learn-
ing.

References
Ando, R., and Lee, L. 2000. Mostly-unsupervised statistical segmentation of japanese: applica-
tions to kanji. In Proceedings of the first conference on North American chapter of the Association
for Computational Linguistics, 241-248.
Brent, M. R. 1999. An efficient, probabilistically sound algorithm for segmentation and word
discovery. Machine Learning.
Cohen, P.; Adams, N.; and Heeringa, B. 2007. Voting experts: An unsupervised algorithm for
segmenting sequences. Journal of Intelligent Data Analysis.
Creutz, M. 2003. Unsupervised segmentation of words using prior distributions of morph length
and frequency. In ACL "03: Proceedings of the 41st Annual Meeting on Association for Computa-
tional Linguistics, 280-287.
de Marcken, C. 1995. The unsupervised acquisition of a lexicon from continuous speech. Techni-
cal Report AIM-1558.
Dittenbach, M.; Merkl, D.; and Rauber, A. 2000. The growing hierarchical self-organizing map.
Neural Networks, 2000. IJCNN 2000 6:15-19 vol.6.
Fritzke, B. 1995. Growing grid - a self-organizing network with constant neighborhood range and
adaptation strength. Neural Processing Letters 2(5):9-13.
Gold, K., and Scassellati, B. 2006. Audio speech segmentation without language-specific knowl-
edge. In Proceedings of the 2nd Annual Conference on Human-Robot Interaction (HRI-07).
Hafer, M. A., and Weiss, S. F. 1974. Word segmentation by letter successor varieties. Information
Storage and Retrieval 10(11-12):371-385.
Kempe, A. 1999. Experiments in unsupervised entropy-based corpus segmentation.
Kohonen, T. 1988. Self-organized formation of topologically correct feature maps. 509-521.
Magerman, D. M., and Marcus, M. P. 1990. Parsing a natural language using mutual information
statistics. In National Conference on Artificial Intelligence, 984-989.
Saffran, J. R.; Aslin, R. N.; and Newport, E. L. 1996. Statistical learning by 8-month-old infants.
Science 274(5294):1926-1928.
Saffran, J. R.; Newport, E. L.; Aslin, R. N.; and Tunick, R. A. 1997. Incidental language learning:
Listening (and learning) out of the corner of your ear. Psychological Science.
Saffran, J. R.; Johnson, E. K.; Aslin, R. N.; and Newport, E. L. 1999. Statistical learning of tone
sequences by human infants and adults. Cognition.
Shannon, C. 1951. Prediction and the entropy of printed english. Technical report, Bell System
Technical Journal.
‘Walker, W.; Lamere, P.; Kwok, P.; Raj, B.; Gingh, R.; and Gouvea, E. 2004. Sphinx-1: A flexible
open source framework for speech recognition. Technical Report TR-2004-139.

